add triangle distribution and associated tests (#144)

* add triangle distribution and associated tests

* add efficiency, constraint checking, and code convention to triangle distribution

* change to follow Categorical structure exporting approach, add MarshalParameters function, and verify parameter constraints in UnmarshalParameters function

* change to export Triangle.Source and remove from NewTriangle signature, add checkTriangleParameters function, and fix bug

* fix comment, replace ln2 with math.Ln2, and add test for a=c

* fix to return float64 for integer division
This commit is contained in:
Bill Gray
2017-07-25 22:46:25 -06:00
committed by Brendan Tracey
parent 602135eb8a
commit 19ba1f6bf5
4 changed files with 277 additions and 0 deletions

View File

@@ -9,6 +9,7 @@
# Please keep the list sorted. # Please keep the list sorted.
Brendan Tracey <tracey.brendan@gmail.com> Brendan Tracey <tracey.brendan@gmail.com>
Bill Gray <wgray@gogray.com>
Bill Noon <noon.bill@gmail.com> Bill Noon <noon.bill@gmail.com>
Chih-Wei Chang <bert.cwchang@gmail.com> Chih-Wei Chang <bert.cwchang@gmail.com>
Chris Tessum <ctessum@gmail.com> Chris Tessum <ctessum@gmail.com>

View File

@@ -16,6 +16,7 @@
# Please keep the list sorted. # Please keep the list sorted.
Brendan Tracey <tracey.brendan@gmail.com> Brendan Tracey <tracey.brendan@gmail.com>
Bill Gray <wgray@gogray.com>
Bill Noon <noon.bill@gmail.com> Bill Noon <noon.bill@gmail.com>
Chih-Wei Chang <bert.cwchang@gmail.com> Chih-Wei Chang <bert.cwchang@gmail.com>
Chris Tessum <ctessum@gmail.com> Chris Tessum <ctessum@gmail.com>

192
stat/distuv/triangle.go Normal file
View File

@@ -0,0 +1,192 @@
// Copyright ©2017 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distuv
import (
"math"
"math/rand"
)
// Triangle represents a triangle distribution (https://en.wikipedia.org/wiki/Triangular_distribution).
type Triangle struct {
a, b, c float64
Source *rand.Rand
}
// NewTriangle constructs a new triangle distribution with lower limit a, upper limit b, and mode c.
// Constraints are a < b and a ≤ c ≤ b.
// This distribution is uncommon in nature, but may be useful for simulation.
func NewTriangle(a, b, c float64) Triangle {
checkTriangleParameters(a, b, c)
return Triangle{a, b, c, nil}
}
func checkTriangleParameters(a, b, c float64) {
if a >= b {
panic("triangle: constraint of a < b violated")
}
if a > c {
panic("triangle: constraint of a <= c violated")
}
if c > b {
panic("triangle: constraint of c <= b violated")
}
}
// CDF computes the value of the cumulative density function at x.
func (t Triangle) CDF(x float64) float64 {
switch {
case x <= t.a:
return 0
case x <= t.c:
d := x - t.a
return (d * d) / ((t.b - t.a) * (t.c - t.a))
case x < t.b:
d := t.b - x
return 1 - (d*d)/((t.b-t.a)*(t.b-t.c))
default:
return 1
}
}
// Entropy returns the entropy of the distribution.
func (t Triangle) Entropy() float64 {
return 0.5 + math.Log(t.b-t.a) - math.Ln2
}
// ExKurtosis returns the excess kurtosis of the distribution.
func (Triangle) ExKurtosis() float64 {
return -3.0 / 5.0
}
// Fit is not appropriate for Triangle, because the distribution is generally used when there is little data.
// LogProb computes the natural logarithm of the value of the probability density function at x.
func (t Triangle) LogProb(x float64) float64 {
return math.Log(t.Prob(x))
}
// Mean returns the mean of the probability distribution.
func (t Triangle) Mean() float64 {
return (t.a + t.b + t.c) / 3
}
// Median returns the median of the probability distribution.
func (t Triangle) Median() float64 {
if t.c >= (t.a+t.b)/2 {
return t.a + math.Sqrt((t.b-t.a)*(t.c-t.a)/2)
}
return t.b - math.Sqrt((t.b-t.a)*(t.b-t.c)/2)
}
// Mode returns the mode of the probability distribution.
func (t Triangle) Mode() float64 {
return t.c
}
// NumParameters returns the number of parameters in the distribution.
func (Triangle) NumParameters() int {
return 3
}
// Prob computes the value of the probability density function at x.
func (t Triangle) Prob(x float64) float64 {
switch {
case x < t.a:
return 0
case x < t.c:
return 2 * (x - t.a) / ((t.b - t.a) * (t.c - t.a))
case x == t.c:
return 2 / (t.b - t.a)
case x <= t.b:
return 2 * (t.b - x) / ((t.b - t.a) * (t.b - t.c))
default:
return 0
}
}
// Quantile returns the inverse of the cumulative probability distribution.
func (t Triangle) Quantile(p float64) float64 {
if p < 0 || p > 1 {
panic(badPercentile)
}
f := (t.c - t.a) / (t.b - t.a)
if p < f {
return t.a + math.Sqrt(p*(t.b-t.a)*(t.c-t.a))
}
return t.b - math.Sqrt((1-p)*(t.b-t.a)*(t.b-t.c))
}
// Rand returns a random sample drawn from the distribution.
func (t Triangle) Rand() float64 {
var rnd float64
if t.Source == nil {
rnd = rand.Float64()
} else {
rnd = t.Source.Float64()
}
return t.Quantile(rnd)
}
// Skewness returns the skewness of the distribution.
func (t Triangle) Skewness() float64 {
n := math.Sqrt2 * (t.a + t.b - 2*t.c) * (2*t.a - t.b - t.c) * (t.a - 2*t.b + t.c)
d := 5 * math.Pow(t.a*t.a+t.b*t.b+t.c*t.c-t.a*t.b-t.a*t.c-t.b*t.c, 3.0/2.0)
return n / d
}
// StdDev returns the standard deviation of the probability distribution.
func (t Triangle) StdDev() float64 {
return math.Sqrt(t.Variance())
}
// Survival returns the survival function (complementary CDF) at x.
func (t Triangle) Survival(x float64) float64 {
return 1 - t.CDF(x)
}
// MarshalParameters implements the ParameterMarshaler interface
func (t Triangle) MarshalParameters(p []Parameter) {
if len(p) != t.NumParameters() {
panic("triangle: improper parameter length")
}
p[0].Name = "A"
p[0].Value = t.a
p[1].Name = "B"
p[1].Value = t.b
p[2].Name = "C"
p[2].Value = t.c
}
// UnmarshalParameters implements the ParameterMarshaler interface
func (t *Triangle) UnmarshalParameters(p []Parameter) {
if len(p) != t.NumParameters() {
panic("triangle: incorrect number of parameters to set")
}
if p[0].Name != "A" {
panic("triangle: " + panicNameMismatch)
}
if p[1].Name != "B" {
panic("triangle: " + panicNameMismatch)
}
if p[2].Name != "C" {
panic("triangle: " + panicNameMismatch)
}
checkTriangleParameters(p[0].Value, p[1].Value, p[2].Value)
t.a = p[0].Value
t.b = p[1].Value
t.c = p[2].Value
}
// Variance returns the variance of the probability distribution.
func (t Triangle) Variance() float64 {
return (t.a*t.a + t.b*t.b + t.c*t.c - t.a*t.b - t.a*t.c - t.b*t.c) / 18
}

View File

@@ -0,0 +1,83 @@
// Copyright ©2017 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distuv
import (
"math"
"testing"
)
func TestTriangleConstraint(t *testing.T) {
defer func() {
if r := recover(); r == nil {
t.Errorf("The constraints were violated, but not caught")
}
}()
// test b < a
NewTriangle(3, 1, 2)
// test c > b
NewTriangle(1, 2, 3)
}
func TestTriangle(t *testing.T) {
for i, test := range []struct {
a, b, c float64
}{
{
a: 0.0,
b: 1.0,
c: 0.5,
},
{
a: 0.1,
b: 0.3,
c: 0.2,
},
{
a: 1.0,
b: 2.0,
c: 1.5,
},
{
a: 0.0,
b: 1.0,
c: 0.0,
},
} {
dist := NewTriangle(test.a, test.b, test.c)
testFullDist(t, dist, i, true)
}
}
func TestTriangleProb(t *testing.T) {
pts := []univariateProbPoint{
{
loc: 0.5,
prob: 0,
cumProb: 0,
logProb: math.Inf(-1),
},
{
loc: 1,
prob: 0,
cumProb: 0,
logProb: math.Inf(-1),
},
{
loc: 2,
prob: 1.0,
cumProb: 0.5,
logProb: 0,
},
{
loc: 3,
prob: 0,
cumProb: 1,
logProb: math.Inf(-1),
},
}
testDistributionProbs(t, NewTriangle(1, 3, 2), "Standard 1,2,3 Triangle", pts)
}