unit: fix up package docs

This commit is contained in:
Dan Kortschak
2019-03-20 08:16:39 +10:30
committed by GitHub
parent 7fd40026c2
commit 16f9b66b45

View File

@@ -7,77 +7,117 @@
// Package unit provides a set of types and constants that facilitate // Package unit provides a set of types and constants that facilitate
// the use of the International System of Units (SI). // the use of the International System of Units (SI).
// //
// Unit provides two main functionalities. // The unit package provides two main functionalities: compile-time type-safe
// base SI units and common derived units; and a system for dynamically
// extensible user-defined units.
//
// Static SI units
//
// This package provides a number of types representing either an SI base
// unit or a common combination of base units, named for the physical quantity
// it represents (Length, Mass, Pressure, etc.). Each type is defined from
// float64. The value of the float64 represents the quantity of that unit as
// expressed in SI base units (Kilogram, Meter, Pascal, etc.). For example,
//
// height := 1.6 * unit.Meter
// acc := unit.Acceleration(9.8)
// //
// 1)
// It provides a number of types representing either an SI base unit
// or a common combination of base units, named for the unit it
// represents (Length, Mass, Pressure, etc.). Each type has
// a float64 as the underlying unit, and its value represents the
// number of that underlying unit (Kilogram, Meter, Pascal, etc.).
// For example,
// height := 1.6 * unit.Meter
// acc := unit.Acceleration(9.8)
// creates a variable named 'height' with a value of 1.6 meters, and // creates a variable named 'height' with a value of 1.6 meters, and
// a variable named 'acc' with a value of 9.8 meters per second squared. // a variable named 'acc' with a value of 9.8 meters per second squared.
// These types can be used to add compile-time safety to code. For // These types can be used to add compile-time safety to code. For
// example, // example,
// func UnitDensity(t unit.Temperature, pressure unit.Pressure) (unit.Density){ //
// ... // func unitVolume(t unit.Temperature, p unit.Pressure) unit.Volume {
// } // ...
// func main(){ // }
// t := 300 * unit.Kelvin //
// p := 5 * unit.Bar // func main(){
// rho := UnitDensity(p, t) // compile-time error // t := 300 * unit.Kelvin
// } // p := 500 * unit.Kilopascal
// v := unitVolume(p, t) // compile-time error
// }
//
// gives a compile-time error (temperature type does not match pressure type) // gives a compile-time error (temperature type does not match pressure type)
// while the corresponding code using float64 runs without error. // while the corresponding code using float64 runs without error.
// func Float64Density(temperature, pressure float64) (float64){ //
// ... // func float64Volume(temperature, pressure float64) float64 {
// } // ...
// func main(){ // }
// t := 300.0 // degrees kelvin //
// p := 50000.0 // Pascals // func main(){
// rho := Float64Density(p, t) // no error // t := 300.0 // Kelvin
// } // p := 500000.0 // Pascals
// v := float64Volume(p, t) // no error
// }
//
// Many types have constants defined representing named SI units (Meter, // Many types have constants defined representing named SI units (Meter,
// Kilogram, etc. ) or SI derived units (Bar, Hz, etc.). The Unit package // Kilogram, etc. ) or SI derived units (Pascal, Hz, etc.). The unit package
// additionally provides untyped constants for SI prefixes, so the following // additionally provides untyped constants for SI prefixes, so the following
// are all equivalent. // are all equivalent.
// l := 0.001 * unit.Meter
// k := 1 * unit.Milli * unit.Meter
// j := unit.Length(0.001)
// //
// 2) // l := 0.001 * unit.Meter
// Unit provides the type "Unit", meant to represent a general dimensional // k := 1 * unit.Milli * unit.Meter
// value. unit.Unit can be used to help prevent errors of dimensionality // j := unit.Length(0.001)
// when multiplying or dividing dimensional numbers. This package also //
// provides the "Uniter" interface which is satisfied by any type which can // Additional SI-derived static units can also be defined by adding types that
// be converted to a unit. New varibles of type Unit can be created with // satisfy the Uniter interface described below.
// the New function and the Dimensions map. For example, the code //
// acc := New(9.81, Dimensions{LengthDim:1, TimeDim: -2}) // Dynamic user-extensible unit system
// creates a variable "acc" which has a value of 9.81 m/s^2. Methods of //
// The unit package also provides the Unit type, a representation of a general
// dimensional value. Unit can be used to help prevent errors of dimensionality
// when multiplying or dividing dimensional numbers defined a run time. New
// variables of type Unit can be created with the New function and the
// Dimensions map. For example, the code
//
// rate := unit.New(1 * unit.Milli, Dimensions{MoleDim: 1, TimeDim: -1})
//
// creates a variable "rate" which has a value of 1e-3 mol/s. Methods of
// unit can be used to modify this value, for example: // unit can be used to modify this value, for example:
// acc.Mul(1.0 * unit.Kilogram).Mul(1 * unit.Meter) //
// rate.Mul(1 * unit.Centimeter).Div(1 * unit.Millivolt)
//
// To convert the unit back into a typed float64 value, the From methods // To convert the unit back into a typed float64 value, the From methods
// of the dimensional types should be used. From will return an error if the // of the dimensional types should be used. From will return an error if the
// dimensions do not match. // dimensions do not match.
// var energy unit.Energy //
// err := (*energy).From(acc) // var energy unit.Energy
// err := energy.From(acc)
//
// Domain-specific problems may need custom dimensions, and for this purpose // Domain-specific problems may need custom dimensions, and for this purpose
// NewDimension should be used to help avoid accidental overlap between // NewDimension should be used to help avoid accidental overlap between
// packages. For example, results from a blood test may be measured in // packages. For example, results from a blood test may be measured in
// "White blood cells per slide". In this case, NewDimension should be // "White blood cells per slide". In this case, NewDimension should be
// used to create a 'WhiteBloodCell' dimension. NewDimension takes in a // used to create a 'WhiteBloodCell' dimension. NewDimension takes in a
// string which will be used for printing that dimension, and will return // string which will be used for printing that dimension, and will return
// a unique dimension number. NewDimension should not be // a unique dimension number.
// used, however, to create the unit of 'Slide', because in this case slide //
// is just a measurement of area. Instead, a constant could be defined. // wbc := unit.NewDimension("WhiteBloodCell")
// const Slide unit.Area = 0.001875 // m^2 //
// Note that Unit cannot catch all errors related to dimensionality. // NewDimension should not be used, however, to create the unit of 'Slide',
// because in this case slide is just a measurement of liquid volume. Instead,
// a constant could be defined.
//
// const Slide unit.Volume = 0.1 * unit.Microliter
//
// Note that unit cannot catch all errors related to dimensionality.
// Different physical ideas are sometimes expressed with the same dimensions // Different physical ideas are sometimes expressed with the same dimensions
// and Unit is incapable of catching these mismatches. For example, energy and // and unit is incapable of catching these mismatches. For example, energy and
// torque are both expressed as force times distance (Newton-meters in SI), // torque are both expressed as force times distance (Newton-meters in SI),
// but it is wrong to say that a torque of 10 N-m is the same as 10 J, even // but it is wrong to say that a torque of 10 N-m is the same as 10 J, even
// though the dimensions agree. // though the dimensions agree. Despite this, using the defined types to
// represent units can help to catch errors at compile-time. For example,
//
// type Torque float64
//
// func (t Torque) Unit() *Unit {...
//
// allows you to define a statically typed function like so
//
// func LeverLength(apply unit.Force, want Torque) unit.Length {
// return unit.Length(float64(want)/float64(apply))
// }
//
// This will prevent an energy value being provided to LeverLength in place
// of a torque value.
package unit // import "gonum.org/v1/gonum/unit" package unit // import "gonum.org/v1/gonum/unit"