diff --git a/unit/doc.go b/unit/doc.go index 9db9d483..fe85e32e 100644 --- a/unit/doc.go +++ b/unit/doc.go @@ -7,77 +7,117 @@ // Package unit provides a set of types and constants that facilitate // the use of the International System of Units (SI). // -// Unit provides two main functionalities. +// The unit package provides two main functionalities: compile-time type-safe +// base SI units and common derived units; and a system for dynamically +// extensible user-defined units. +// +// Static SI units +// +// This package provides a number of types representing either an SI base +// unit or a common combination of base units, named for the physical quantity +// it represents (Length, Mass, Pressure, etc.). Each type is defined from +// float64. The value of the float64 represents the quantity of that unit as +// expressed in SI base units (Kilogram, Meter, Pascal, etc.). For example, +// +// height := 1.6 * unit.Meter +// acc := unit.Acceleration(9.8) // -// 1) -// It provides a number of types representing either an SI base unit -// or a common combination of base units, named for the unit it -// represents (Length, Mass, Pressure, etc.). Each type has -// a float64 as the underlying unit, and its value represents the -// number of that underlying unit (Kilogram, Meter, Pascal, etc.). -// For example, -// height := 1.6 * unit.Meter -// acc := unit.Acceleration(9.8) // creates a variable named 'height' with a value of 1.6 meters, and // a variable named 'acc' with a value of 9.8 meters per second squared. // These types can be used to add compile-time safety to code. For // example, -// func UnitDensity(t unit.Temperature, pressure unit.Pressure) (unit.Density){ -// ... -// } -// func main(){ -// t := 300 * unit.Kelvin -// p := 5 * unit.Bar -// rho := UnitDensity(p, t) // compile-time error -// } +// +// func unitVolume(t unit.Temperature, p unit.Pressure) unit.Volume { +// ... +// } +// +// func main(){ +// t := 300 * unit.Kelvin +// p := 500 * unit.Kilopascal +// v := unitVolume(p, t) // compile-time error +// } +// // gives a compile-time error (temperature type does not match pressure type) // while the corresponding code using float64 runs without error. -// func Float64Density(temperature, pressure float64) (float64){ -// ... -// } -// func main(){ -// t := 300.0 // degrees kelvin -// p := 50000.0 // Pascals -// rho := Float64Density(p, t) // no error -// } +// +// func float64Volume(temperature, pressure float64) float64 { +// ... +// } +// +// func main(){ +// t := 300.0 // Kelvin +// p := 500000.0 // Pascals +// v := float64Volume(p, t) // no error +// } +// // Many types have constants defined representing named SI units (Meter, -// Kilogram, etc. ) or SI derived units (Bar, Hz, etc.). The Unit package +// Kilogram, etc. ) or SI derived units (Pascal, Hz, etc.). The unit package // additionally provides untyped constants for SI prefixes, so the following // are all equivalent. -// l := 0.001 * unit.Meter -// k := 1 * unit.Milli * unit.Meter -// j := unit.Length(0.001) // -// 2) -// Unit provides the type "Unit", meant to represent a general dimensional -// value. unit.Unit can be used to help prevent errors of dimensionality -// when multiplying or dividing dimensional numbers. This package also -// provides the "Uniter" interface which is satisfied by any type which can -// be converted to a unit. New varibles of type Unit can be created with -// the New function and the Dimensions map. For example, the code -// acc := New(9.81, Dimensions{LengthDim:1, TimeDim: -2}) -// creates a variable "acc" which has a value of 9.81 m/s^2. Methods of +// l := 0.001 * unit.Meter +// k := 1 * unit.Milli * unit.Meter +// j := unit.Length(0.001) +// +// Additional SI-derived static units can also be defined by adding types that +// satisfy the Uniter interface described below. +// +// Dynamic user-extensible unit system +// +// The unit package also provides the Unit type, a representation of a general +// dimensional value. Unit can be used to help prevent errors of dimensionality +// when multiplying or dividing dimensional numbers defined a run time. New +// variables of type Unit can be created with the New function and the +// Dimensions map. For example, the code +// +// rate := unit.New(1 * unit.Milli, Dimensions{MoleDim: 1, TimeDim: -1}) +// +// creates a variable "rate" which has a value of 1e-3 mol/s. Methods of // unit can be used to modify this value, for example: -// acc.Mul(1.0 * unit.Kilogram).Mul(1 * unit.Meter) +// +// rate.Mul(1 * unit.Centimeter).Div(1 * unit.Millivolt) +// // To convert the unit back into a typed float64 value, the From methods // of the dimensional types should be used. From will return an error if the // dimensions do not match. -// var energy unit.Energy -// err := (*energy).From(acc) +// +// var energy unit.Energy +// err := energy.From(acc) +// // Domain-specific problems may need custom dimensions, and for this purpose // NewDimension should be used to help avoid accidental overlap between // packages. For example, results from a blood test may be measured in // "White blood cells per slide". In this case, NewDimension should be // used to create a 'WhiteBloodCell' dimension. NewDimension takes in a // string which will be used for printing that dimension, and will return -// a unique dimension number. NewDimension should not be -// used, however, to create the unit of 'Slide', because in this case slide -// is just a measurement of area. Instead, a constant could be defined. -// const Slide unit.Area = 0.001875 // m^2 -// Note that Unit cannot catch all errors related to dimensionality. +// a unique dimension number. +// +// wbc := unit.NewDimension("WhiteBloodCell") +// +// NewDimension should not be used, however, to create the unit of 'Slide', +// because in this case slide is just a measurement of liquid volume. Instead, +// a constant could be defined. +// +// const Slide unit.Volume = 0.1 * unit.Microliter +// +// Note that unit cannot catch all errors related to dimensionality. // Different physical ideas are sometimes expressed with the same dimensions -// and Unit is incapable of catching these mismatches. For example, energy and +// and unit is incapable of catching these mismatches. For example, energy and // torque are both expressed as force times distance (Newton-meters in SI), // but it is wrong to say that a torque of 10 N-m is the same as 10 J, even -// though the dimensions agree. +// though the dimensions agree. Despite this, using the defined types to +// represent units can help to catch errors at compile-time. For example, +// +// type Torque float64 +// +// func (t Torque) Unit() *Unit {... +// +// allows you to define a statically typed function like so +// +// func LeverLength(apply unit.Force, want Torque) unit.Length { +// return unit.Length(float64(want)/float64(apply)) +// } +// +// This will prevent an energy value being provided to LeverLength in place +// of a torque value. package unit // import "gonum.org/v1/gonum/unit"