internal/rand: delete shim package

This commit is contained in:
Dan Kortschak
2025-01-02 12:55:59 +10:30
parent bc349ecfab
commit 061ef9d2b9
3 changed files with 0 additions and 762 deletions

View File

@@ -1,393 +0,0 @@
// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rand implements pseudo-random number generators.
//
// Random numbers are generated by a Source. Top-level functions, such as
// Float64 and Int, use a default shared Source that produces a deterministic
// sequence of values each time a program is run. Use the Seed function to
// initialize the default Source if different behavior is required for each run.
// The default Source, a LockedSource, is safe for concurrent use by multiple
// goroutines, but Sources created by NewSource are not. However, Sources are small
// and it is reasonable to have a separate Source for each goroutine, seeded
// differently, to avoid locking.
//
// For random numbers suitable for security-sensitive work, see the crypto/rand
// package.
package rand
import (
"math/rand/v2"
"sync"
)
// A Source represents a source of uniformly-distributed
// pseudo-random int64 values in the range [0, 1<<64).
type Source interface {
Uint64() uint64
Seed(seed uint64)
}
// NewSource returns a new pseudo-random Source seeded with the given value.
func NewSource(seed uint64) Source {
return &pcgShim{rand.NewPCG(seed, seed)}
}
type pcgShim struct {
*rand.PCG
}
func (p *pcgShim) Seed(seed uint64) {
p.PCG.Seed(seed, seed)
}
// A Rand is a source of random numbers.
type Rand struct {
src Source
// readVal contains remainder of 64-bit integer used for bytes
// generation during most recent Read call.
// It is saved so next Read call can start where the previous
// one finished.
readVal uint64
// readPos indicates the number of low-order bytes of readVal
// that are still valid.
readPos int8
}
// New returns a new Rand that uses random values from src
// to generate other random values.
func New(src Source) *Rand {
return &Rand{src: src}
}
func (r *Rand) NormFloat64() float64 {
return rand.New(r.src).NormFloat64()
}
func (r *Rand) ExpFloat64() float64 {
return rand.New(r.src).ExpFloat64()
}
// Seed uses the provided seed value to initialize the generator to a deterministic state.
// Seed should not be called concurrently with any other Rand method.
func (r *Rand) Seed(seed uint64) {
if lk, ok := r.src.(*LockedSource); ok {
lk.seedPos(seed, &r.readPos)
return
}
r.src.Seed(seed)
r.readPos = 0
}
// Uint64 returns a pseudo-random 64-bit integer as a uint64.
func (r *Rand) Uint64() uint64 { return r.src.Uint64() }
// Int63 returns a non-negative pseudo-random 63-bit integer as an int64.
func (r *Rand) Int63() int64 { return int64(r.src.Uint64() &^ (1 << 63)) }
// Uint32 returns a pseudo-random 32-bit value as a uint32.
func (r *Rand) Uint32() uint32 { return uint32(r.Uint64() >> 32) }
// Int31 returns a non-negative pseudo-random 31-bit integer as an int32.
func (r *Rand) Int31() int32 { return int32(r.Uint64() >> 33) }
// Int returns a non-negative pseudo-random int.
func (r *Rand) Int() int {
u := uint(r.Uint64())
return int(u << 1 >> 1) // clear sign bit.
}
const maxUint64 = (1 << 64) - 1
// Uint64n returns, as a uint64, a pseudo-random number in [0,n).
// It is guaranteed more uniform than taking a Source value mod n
// for any n that is not a power of 2.
func (r *Rand) Uint64n(n uint64) uint64 {
if n&(n-1) == 0 { // n is power of two, can mask
if n == 0 {
panic("invalid argument to Uint64n")
}
return r.Uint64() & (n - 1)
}
// If n does not divide v, to avoid bias we must not use
// a v that is within maxUint64%n of the top of the range.
v := r.Uint64()
if v > maxUint64-n { // Fast check.
ceiling := maxUint64 - maxUint64%n
for v >= ceiling {
v = r.Uint64()
}
}
return v % n
}
// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n).
// It panics if n <= 0.
func (r *Rand) Int63n(n int64) int64 {
if n <= 0 {
panic("invalid argument to Int63n")
}
return int64(r.Uint64n(uint64(n)))
}
// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n).
// It panics if n <= 0.
func (r *Rand) Int31n(n int32) int32 {
if n <= 0 {
panic("invalid argument to Int31n")
}
// TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines.
return int32(r.Uint64n(uint64(n)))
}
// Intn returns, as an int, a non-negative pseudo-random number in [0,n).
// It panics if n <= 0.
func (r *Rand) Intn(n int) int {
if n <= 0 {
panic("invalid argument to Intn")
}
// TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines.
return int(r.Uint64n(uint64(n)))
}
// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0).
func (r *Rand) Float64() float64 {
// There is one bug in the value stream: r.Int63() may be so close
// to 1<<63 that the division rounds up to 1.0, and we've guaranteed
// that the result is always less than 1.0.
//
// We tried to fix this by mapping 1.0 back to 0.0, but since float64
// values near 0 are much denser than near 1, mapping 1 to 0 caused
// a theoretically significant overshoot in the probability of returning 0.
// Instead of that, if we round up to 1, just try again.
// Getting 1 only happens 1/2⁵³ of the time, so most clients
// will not observe it anyway.
again:
f := float64(r.Uint64n(1<<53)) / (1 << 53)
if f == 1.0 {
goto again // resample; this branch is taken O(never)
}
return f
}
// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0).
func (r *Rand) Float32() float32 {
// We do not want to return 1.0.
// This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64).
again:
f := float32(r.Float64())
if f == 1 {
goto again // resample; this branch is taken O(very rarely)
}
return f
}
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n).
func (r *Rand) Perm(n int) []int {
m := make([]int, n)
// In the following loop, the iteration when i=0 always swaps m[0] with m[0].
// A change to remove this useless iteration is to assign 1 to i in the init
// statement. But Perm also effects r. Making this change will affect
// the final state of r. So this change can't be made for compatibility
// reasons for Go 1.
for i := 0; i < n; i++ {
j := r.Intn(i + 1)
m[i] = m[j]
m[j] = i
}
return m
}
// Shuffle pseudo-randomizes the order of elements.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func (r *Rand) Shuffle(n int, swap func(i, j int)) {
if n < 0 {
panic("invalid argument to Shuffle")
}
// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
// Shuffle really ought not be called with n that doesn't fit in 32 bits.
// Not only will it take a very long time, but with 2³¹! possible permutations,
// there's no way that any PRNG can have a big enough internal state to
// generate even a minuscule percentage of the possible permutations.
// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
i := n - 1
for ; i > 1<<31-1-1; i-- {
j := int(r.Int63n(int64(i + 1)))
swap(i, j)
}
for ; i > 0; i-- {
j := int(r.Int31n(int32(i + 1)))
swap(i, j)
}
}
// Read generates len(p) random bytes and writes them into p. It
// always returns len(p) and a nil error.
// Read should not be called concurrently with any other Rand method unless
// the underlying source is a LockedSource.
func (r *Rand) Read(p []byte) (n int, err error) {
if lk, ok := r.src.(*LockedSource); ok {
return lk.Read(p, &r.readVal, &r.readPos)
}
return read(p, r.src, &r.readVal, &r.readPos)
}
func read(p []byte, src Source, readVal *uint64, readPos *int8) (n int, err error) {
pos := *readPos
val := *readVal
rng, _ := src.(*pcgShim)
for n = 0; n < len(p); n++ {
if pos == 0 {
if rng != nil {
val = rng.Uint64()
} else {
val = src.Uint64()
}
pos = 8
}
p[n] = byte(val)
val >>= 8
pos--
}
*readPos = pos
*readVal = val
return
}
/*
* Top-level convenience functions
*/
var globalRand = New(&LockedSource{src: *NewSource(1).(*pcgShim)})
// Type assert that globalRand's source is a LockedSource whose src is a PCGSource.
var _ pcgShim = globalRand.src.(*LockedSource).src
// Seed uses the provided seed value to initialize the default Source to a
// deterministic state. If Seed is not called, the generator behaves as
// if seeded by Seed(1).
// Seed, unlike the Rand.Seed method, is safe for concurrent use.
func Seed(seed uint64) { globalRand.Seed(seed) }
// Int63 returns a non-negative pseudo-random 63-bit integer as an int64
// from the default Source.
func Int63() int64 { return globalRand.Int63() }
// Uint32 returns a pseudo-random 32-bit value as a uint32
// from the default Source.
func Uint32() uint32 { return globalRand.Uint32() }
// Uint64 returns a pseudo-random 64-bit value as a uint64
// from the default Source.
func Uint64() uint64 { return globalRand.Uint64() }
// Int31 returns a non-negative pseudo-random 31-bit integer as an int32
// from the default Source.
func Int31() int32 { return globalRand.Int31() }
// Int returns a non-negative pseudo-random int from the default Source.
func Int() int { return globalRand.Int() }
// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n)
// from the default Source.
// It panics if n <= 0.
func Int63n(n int64) int64 { return globalRand.Int63n(n) }
// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n)
// from the default Source.
// It panics if n <= 0.
func Int31n(n int32) int32 { return globalRand.Int31n(n) }
// Intn returns, as an int, a non-negative pseudo-random number in [0,n)
// from the default Source.
// It panics if n <= 0.
func Intn(n int) int { return globalRand.Intn(n) }
// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0)
// from the default Source.
func Float64() float64 { return globalRand.Float64() }
// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0)
// from the default Source.
func Float32() float32 { return globalRand.Float32() }
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n)
// from the default Source.
func Perm(n int) []int { return globalRand.Perm(n) }
// Shuffle pseudo-randomizes the order of elements using the default Source.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) }
// Read generates len(p) random bytes from the default Source and
// writes them into p. It always returns len(p) and a nil error.
// Read, unlike the Rand.Read method, is safe for concurrent use.
func Read(p []byte) (n int, err error) { return globalRand.Read(p) }
// NormFloat64 returns a normally distributed float64 in the range
// [-math.MaxFloat64, +math.MaxFloat64] with
// standard normal distribution (mean = 0, stddev = 1)
// from the default Source.
// To produce a different normal distribution, callers can
// adjust the output using:
//
// sample = NormFloat64() * desiredStdDev + desiredMean
func NormFloat64() float64 { return globalRand.NormFloat64() }
// ExpFloat64 returns an exponentially distributed float64 in the range
// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
// (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
// To produce a distribution with a different rate parameter,
// callers can adjust the output using:
//
// sample = ExpFloat64() / desiredRateParameter
func ExpFloat64() float64 { return globalRand.ExpFloat64() }
// LockedSource is an implementation of Source that is concurrency-safe.
// A Rand using a LockedSource is safe for concurrent use.
//
// The zero value of LockedSource is valid, but should be seeded before use.
type LockedSource struct {
lk sync.Mutex
src pcgShim
}
func (s *LockedSource) Uint64() (n uint64) {
s.lk.Lock()
n = s.src.Uint64()
s.lk.Unlock()
return
}
func (s *LockedSource) Seed(seed uint64) {
s.lk.Lock()
s.src.Seed(seed)
s.lk.Unlock()
}
// seedPos implements Seed for a LockedSource without a race condiiton.
func (s *LockedSource) seedPos(seed uint64, readPos *int8) {
s.lk.Lock()
s.src.Seed(seed)
*readPos = 0
s.lk.Unlock()
}
// Read implements Read for a LockedSource.
func (s *LockedSource) Read(p []byte, readVal *uint64, readPos *int8) (n int, err error) {
s.lk.Lock()
n, err = read(p, &s.src, readVal, readPos)
s.lk.Unlock()
return
}

View File

@@ -1,368 +0,0 @@
// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rand
import (
"bytes"
"errors"
"fmt"
"io"
"math"
"os"
"runtime"
"strings"
"testing"
"testing/iotest"
)
const (
numTestSamples = 10000
)
type statsResults struct {
mean float64
stddev float64
closeEnough float64
maxError float64
}
func nearEqual(a, b, closeEnough, maxError float64) bool {
absDiff := math.Abs(a - b)
if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
return true
}
return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
}
var testSeeds = []uint64{1, 1754801282, 1698661970, 1550503961}
// checkSimilarDistribution returns success if the mean and stddev of the
// two statsResults are similar.
func (sr *statsResults) checkSimilarDistribution(expected *statsResults) error {
if !nearEqual(sr.mean, expected.mean, expected.closeEnough, expected.maxError) {
s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", sr.mean, expected.mean, expected.closeEnough, expected.maxError)
fmt.Println(s)
return errors.New(s)
}
if !nearEqual(sr.stddev, expected.stddev, expected.closeEnough, expected.maxError) {
s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", sr.stddev, expected.stddev, expected.closeEnough, expected.maxError)
fmt.Println(s)
return errors.New(s)
}
return nil
}
func getStatsResults(samples []float64) *statsResults {
res := new(statsResults)
var sum, squaresum float64
for _, s := range samples {
sum += s
squaresum += s * s
}
res.mean = sum / float64(len(samples))
res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
return res
}
func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
t.Helper()
actual := getStatsResults(samples)
err := actual.checkSimilarDistribution(expected)
if err != nil {
t.Error(err)
}
}
func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
t.Helper()
chunk := len(samples) / nslices
for i := 0; i < nslices; i++ {
low := i * chunk
var high int
if i == nslices-1 {
high = len(samples) - 1
} else {
high = (i + 1) * chunk
}
checkSampleDistribution(t, samples[low:high], expected)
}
}
//
// Normal distribution tests
//
func generateNormalSamples(nsamples int, mean, stddev float64, seed uint64) []float64 {
r := New(NewSource(seed))
samples := make([]float64, nsamples)
for i := range samples {
samples[i] = r.NormFloat64()*stddev + mean
}
return samples
}
func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed uint64) {
//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
samples := generateNormalSamples(nsamples, mean, stddev, seed)
errorScale := max(1.0, stddev) // Error scales with stddev
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
// Make sure that each half of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 2, expected)
// Make sure that each 7th of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 7, expected)
}
// Actual tests
func TestStandardNormalValues(t *testing.T) {
for _, seed := range testSeeds {
testNormalDistribution(t, numTestSamples, 0, 1, seed)
}
}
func TestNonStandardNormalValues(t *testing.T) {
sdmax := 1000.0
mmax := 1000.0
if testing.Short() {
sdmax = 5
mmax = 5
}
for sd := 0.5; sd < sdmax; sd *= 2 {
for m := 0.5; m < mmax; m *= 2 {
for _, seed := range testSeeds {
testNormalDistribution(t, numTestSamples, m, sd, seed)
if testing.Short() {
break
}
}
}
}
}
//
// Exponential distribution tests
//
func generateExponentialSamples(nsamples int, rate float64, seed uint64) []float64 {
r := New(NewSource(seed))
samples := make([]float64, nsamples)
for i := range samples {
samples[i] = r.ExpFloat64() / rate
}
return samples
}
func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed uint64) {
//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed)
mean := 1 / rate
stddev := mean
samples := generateExponentialSamples(nsamples, rate, seed)
errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
// Make sure that each half of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 2, expected)
// Make sure that each 7th of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 7, expected)
}
// Actual tests
func TestStandardExponentialValues(t *testing.T) {
for _, seed := range testSeeds {
testExponentialDistribution(t, numTestSamples, 1, seed)
}
}
func TestNonStandardExponentialValues(t *testing.T) {
for rate := 0.05; rate < 10; rate *= 2 {
for _, seed := range testSeeds {
testExponentialDistribution(t, numTestSamples, rate, seed)
if testing.Short() {
break
}
}
}
}
// compareUint32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareUint32Slices(s1, s2 []uint32) int {
if len(s1) != len(s2) {
if len(s1) > len(s2) {
return len(s2) + 1
}
return len(s1) + 1
}
for i := range s1 {
if s1[i] != s2[i] {
return i
}
}
return -1
}
// compareFloat32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareFloat32Slices(s1, s2 []float32) int {
if len(s1) != len(s2) {
if len(s1) > len(s2) {
return len(s2) + 1
}
return len(s1) + 1
}
for i := range s1 {
if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
return i
}
}
return -1
}
func hasSlowFloatingPoint() bool {
switch runtime.GOARCH {
case "arm":
return os.Getenv("GOARM") == "5" || strings.HasSuffix(os.Getenv("GOARM"), ",softfloat")
case "mips", "mipsle", "mips64", "mips64le":
// Be conservative and assume that all mips boards
// have emulated floating point.
// TODO: detect what it actually has.
return true
}
return false
}
func TestFloat32(t *testing.T) {
// For issue 6721, the problem came after 7533753 calls, so check 10e6.
num := int(10e6)
// But do the full amount only on builders (not locally).
// But ARM5 floating point emulation is slow (Issue 10749), so
// do less for that builder:
if testing.Short() && hasSlowFloatingPoint() { // TODO: (testenv.Builder() == "" || hasSlowFloatingPoint())
num /= 100 // 1.72 seconds instead of 172 seconds
}
r := New(NewSource(1))
for ct := 0; ct < num; ct++ {
f := r.Float32()
if f >= 1 {
t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
}
}
}
func testReadUniformity(t *testing.T, n int, seed uint64) {
r := New(NewSource(seed))
buf := make([]byte, n)
nRead, err := r.Read(buf)
if err != nil {
t.Errorf("Read err %v", err)
}
if nRead != n {
t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
}
// Expect a uniform distribution of byte values, which lie in [0, 255].
var (
mean = 255.0 / 2
stddev = 256.0 / math.Sqrt(12.0)
errorScale = stddev / math.Sqrt(float64(n))
)
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
// Cast bytes as floats to use the common distribution-validity checks.
samples := make([]float64, n)
for i, val := range buf {
samples[i] = float64(val)
}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
}
func TestReadUniformity(t *testing.T) {
testBufferSizes := []int{
2, 4, 7, 64, 1024, 1 << 16, 1 << 20,
}
for _, seed := range testSeeds {
for _, n := range testBufferSizes {
testReadUniformity(t, n, seed)
}
}
}
func TestReadEmpty(t *testing.T) {
r := New(NewSource(1))
buf := make([]byte, 0)
n, err := r.Read(buf)
if err != nil {
t.Errorf("Read err into empty buffer; %v", err)
}
if n != 0 {
t.Errorf("Read into empty buffer returned unexpected n of %d", n)
}
}
func TestReadByOneByte(t *testing.T) {
r := New(NewSource(1))
b1 := make([]byte, 100)
_, err := io.ReadFull(iotest.OneByteReader(r), b1)
if err != nil {
t.Errorf("read by one byte: %v", err)
}
r = New(NewSource(1))
b2 := make([]byte, 100)
_, err = r.Read(b2)
if err != nil {
t.Errorf("read: %v", err)
}
if !bytes.Equal(b1, b2) {
t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2)
}
}
func TestReadSeedReset(t *testing.T) {
r := New(NewSource(42))
b1 := make([]byte, 128)
_, err := r.Read(b1)
if err != nil {
t.Errorf("read: %v", err)
}
r.Seed(42)
b2 := make([]byte, 128)
_, err = r.Read(b2)
if err != nil {
t.Errorf("read: %v", err)
}
if !bytes.Equal(b1, b2) {
t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2)
}
}
func TestShuffleSmall(t *testing.T) {
// Check that Shuffle allows n=0 and n=1, but that swap is never called for them.
r := New(NewSource(1))
for n := 0; n <= 1; n++ {
r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) })
}
}

View File

@@ -1 +0,0 @@
checks = ["inherit", "-U1000"]