Quantized DCT coeficients, tweaking parameters

This commit is contained in:
esimov
2018-04-18 17:41:26 +03:00
parent 45dfd78aca
commit f77495a2d4
2 changed files with 522 additions and 68 deletions

230
main.go
View File

@@ -15,12 +15,19 @@ import (
)
const (
BlockSize int = 4
FrequencyThreshold = 0.2
OffsetThreshold = 276
ForgeryThreshold = 305
BlockSize int = 4
DistanceThreshold = 0.4
OffsetThreshold = 72
ForgeryThreshold = 220
)
var q4x4 = [][]float64{
{16.0, 10.0, 24.0, 51.0},
{14.0, 16.0, 40.0, 69.0},
{18.0, 37.0, 68.0, 103.0},
{49.0, 78.0, 103.0, 120.0},
}
// pixel struct contains the discrete cosine transformation R,G,B,Y values.
type pixel struct {
r, g, b, y float64
@@ -40,14 +47,14 @@ type imageBlock struct {
type vector struct {
xa, ya int
xb, yb int
offsetX, offsetY int
offsetX, offsetY float64
}
// feature struct contains the feature blocks x, y position and their respective values.
type feature struct {
x int
y int
val float64
x int
y int
coef float64
}
var (
@@ -57,26 +64,34 @@ var (
)
func main() {
start := time.Now()
input, err := os.Open("parade_forged.jpg")
defer input.Close()
if err != nil {
fmt.Printf("Error reading the image file: %v", err)
}
img, _, err := image.Decode(input)
src, _, err := image.Decode(input)
if err != nil {
fmt.Printf("Error decoding the image: %v", err)
}
start := time.Now()
img := imgToNRGBA(src)
output := image.NewRGBA(img.Bounds())
draw.Draw(output, image.Rect(0, 0, img.Bounds().Dx(), img.Bounds().Dy()), img, image.ZP, draw.Src)
// Blur the image to eliminate the details.
blurImg := StackBlur(img, 1)
// Convert image to YUV color space
yuv := convertRGBImageToYUV(img)
yuv := convertRGBImageToYUV(blurImg)
newImg := image.NewRGBA(yuv.Bounds())
draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Dx(), yuv.Bounds().Dy()), yuv, image.ZP, draw.Src)
dx, dy := yuv.Bounds().Max.X, yuv.Bounds().Max.Y
bdx, bdy := (dx - BlockSize + 1), (dy - BlockSize + 1)
n := math.Max(float64(dx), float64(dy))
var blocks []imageBlock
for i := 0; i < bdx; i++ {
@@ -84,36 +99,27 @@ func main() {
r := image.Rect(i, j, i+BlockSize, j+BlockSize)
block := newImg.SubImage(r).(*image.RGBA)
blocks = append(blocks, imageBlock{x: i, y: j, img: block})
draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Max.X, yuv.Bounds().Max.Y), block, image.ZP, draw.Src)
//draw.Draw(newImg, image.Rect(0, 0, yuv.Bounds().Max.X, yuv.Bounds().Max.Y), block, image.ZP, draw.Src)
}
}
fmt.Printf("Len: %d", len(blocks))
out, err := os.Create("output.png")
if err != nil {
fmt.Printf("Error creating output file: %v", err)
}
if err := png.Encode(out, newImg); err != nil {
fmt.Printf("Error encoding image file: %v", err)
}
// Average RGB value.
var avr, avg, avb float64
fmt.Printf("Len: %d\n", len(blocks))
for _, block := range blocks {
// Average RGB value.
var avr, avg, avb float64
b := block.img.(*image.RGBA)
i0 := b.PixOffset(b.Bounds().Min.X, b.Bounds().Min.Y)
i1 := i0 + b.Bounds().Dx()*4
i1 := i0 + b.Bounds().Dx() * 4
dctPixels := make(dctPx, BlockSize*BlockSize)
dctPixels := make(dctPx, BlockSize * BlockSize)
for u := 0; u < BlockSize; u++ {
dctPixels[u] = make([]pixel, BlockSize)
for v := 0; v < BlockSize; v++ {
for i := i0; i < i1; i += 4 {
// Get the YUV converted image pixels
yc, uc, vc, _ := b.Pix[i+0], b.Pix[i+2], b.Pix[i+2], b.Pix[i+3]
yc, uc, vc, _ := b.Pix[i + 0], b.Pix[i + 2], b.Pix[i + 2], b.Pix[i + 3]
// Convert YUV to RGB and obtain the R value
r, g, b := color.YCbCrToRGB(yc, uc, vc)
@@ -135,36 +141,42 @@ func main() {
// normalization
alpha := func(a float64) float64 {
if a == 0 {
return math.Sqrt(1.0 / float64(dx))
return math.Sqrt(1.0 / float64(n))
} else {
return math.Sqrt(2.0 / float64(dy))
return math.Sqrt(2.0 / float64(n))
}
}
fi, fj := float64(u), float64(v)
cr *= alpha(fi) * alpha(fj)
cg *= alpha(fi) * alpha(fj)
cb *= alpha(fi) * alpha(fj)
cy *= alpha(fi) * alpha(fj)
cu, cv := float64(u), float64(v)
cr *= alpha(cu) * alpha(cv)
cg *= alpha(cu) * alpha(cv)
cb *= alpha(cu) * alpha(cv)
cy *= alpha(cu) * alpha(cv)
dctPixels[u][v] = pixel{cr, cg, cb, cy}
// Get the quantized DCT coefficients.
dctPixels[u][v].r = (dctPixels[u][v].r / q4x4[u][v])
dctPixels[u][v].g = (dctPixels[u][v].g / q4x4[u][v])
dctPixels[u][v].b = (dctPixels[u][v].b / q4x4[u][v])
dctPixels[u][v].y = (dctPixels[u][v].y / q4x4[u][v])
}
}
avr /= float64(BlockSize * BlockSize)
avg /= float64(BlockSize * BlockSize)
avb /= float64(BlockSize * BlockSize)
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].y})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][1].y})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[1][0].y})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].r})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].g})
features = append(features, feature{x: block.x, y: block.y, val: dctPixels[0][0].b})
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].y})
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][1].y})
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[1][0].y})
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].r})
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].g})
features = append(features, feature{x: block.x, y: block.y, coef: dctPixels[0][0].b})
// Append average R,G,B values to the features vector(slice).
features = append(features, feature{x: block.x, y: block.y, val: avr})
features = append(features, feature{x: block.x, y: block.y, val: avb})
features = append(features, feature{x: block.x, y: block.y, val: avg})
features = append(features, feature{x: block.x, y: block.y, coef: avr})
features = append(features, feature{x: block.x, y: block.y, coef: avb})
features = append(features, feature{x: block.x, y: block.y, coef: avg})
}
// Lexicographically sort the feature vectors
@@ -180,7 +192,21 @@ func main() {
}
simBlocks := getSuspiciousBlocks(vectors)
_, result := filterOutNeighbors(simBlocks)
forgedBlocks, result := filterOutNeighbors(simBlocks)
for _, bl := range forgedBlocks {
background := color.RGBA{255, 0, 0, 255}
draw.Draw(output, image.Rect(bl.xa, bl.ya, bl.xa+BlockSize, bl.ya+BlockSize), &image.Uniform{background}, image.ZP, draw.Src)
}
out, err := os.Create("output.png")
if err != nil {
fmt.Printf("Error creating output file: %v", err)
}
if err := png.Encode(out, output); err != nil {
fmt.Printf("Error encoding image file: %v", err)
}
fmt.Println("\n", result)
@@ -217,18 +243,18 @@ func analyzeBlocks(blockA, blockB feature) *vector {
ya: blockA.y,
xb: blockB.x,
yb: blockB.y,
offsetX: int(math.Abs(dx)),
offsetY: int(math.Abs(dy)),
offsetX: math.Abs(dx),
offsetY: math.Abs(dy),
}
if dist < FrequencyThreshold {
if dist < DistanceThreshold {
return res
}
return nil
}
type offset struct {
x, y int
x, y float64
}
type newVector []vector
@@ -261,6 +287,7 @@ func getSuspiciousBlocks(vect []vector) newVector {
})
}
}
fmt.Println("Blocks: ", len(suspiciousBlocks))
return suspiciousBlocks
}
@@ -271,6 +298,7 @@ func filterOutNeighbors(vect []vector) (newVector, bool) {
for i := 1; i < len(vect); i++ {
blockA, blockB := vect[i-1], vect[i]
// Continue only if two regions are not neighbors.
if blockA.xa != blockB.xa && blockA.ya != blockB.ya {
// Calculate the euclidean distance between both regions.
@@ -280,9 +308,7 @@ func filterOutNeighbors(vect []vector) (newVector, bool) {
// Evaluate the euclidean distance distance between two regions
// and make sure the distance is greater than a predefined threshold.
// TODO verify threshold value
if dist > ForgeryThreshold {
fmt.Println(vect[i].xa, vect[i].ya)
forgedBlocks = append(forgedBlocks, vector{
vect[i].xa, vect[i].ya, vect[i].xb, vect[i].yb, vect[i].offsetX, vect[i].offsetY,
})
@@ -318,22 +344,16 @@ func idct(u, v, x, y, w float64) float64 {
return dct(u, v, x, y, w) * alpha(u) * alpha(v)
}
func RGBtoYUV(r, g, b uint32) (uint32, uint32, uint32) {
y := 0.299*float64(r) + 0.587*float64(g) + 0.114*float64(b)
u := (((float64(b) - float64(y)) * 0.493) + 111) / 222 * 255
v := (((float64(r) - float64(y)) * 0.877) + 155) / 312 * 255
return uint32(y), uint32(u), uint32(v)
}
func YUVtoRGB(y, u, v uint32) (uint32, uint32, uint32) {
r := float64(y) + (1.13983 * float64(v))
g := float64(y) - (0.39465 * float64(u)) - (0.58060 * float64(v))
b := float64(y) + (2.03211 * float64(u))
return uint32(r), uint32(g), uint32(b)
// round rounds float number to it's nearest integer part.
func round(x float64) float64 {
t := math.Trunc(x)
if math.Abs(x-t) >= 0.5 {
return t + math.Copysign(1, x)
}
return t
}
// clamp255 converts a float64 number to uint8.
func clamp255(x float64) uint8 {
if x < 0 {
return 0
@@ -371,11 +391,85 @@ type featVec []feature
func (a featVec) Len() int { return len(a) }
func (a featVec) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a featVec) Less(i, j int) bool {
if a[i].val < a[j].val {
if a[i].coef < a[j].coef {
return true
}
if a[i].val > a[j].val {
if a[i].coef > a[j].coef {
return false
}
return a[i].val < a[j].val
return a[i].coef < a[j].coef
}
func RGBtoYUV(r, g, b uint32) (uint32, uint32, uint32) {
y := 0.299*float64(r) + 0.587*float64(g) + 0.114*float64(b)
u := (((float64(b) - float64(y)) * 0.493) + 111) / 222 * 255
v := (((float64(r) - float64(y)) * 0.877) + 155) / 312 * 255
return uint32(y), uint32(u), uint32(v)
}
func YUVtoRGB(y, u, v uint32) (uint32, uint32, uint32) {
r := float64(y) + (1.13983 * float64(v))
g := float64(y) - (0.39465 * float64(u)) - (0.58060 * float64(v))
b := float64(y) + (2.03211 * float64(u))
return uint32(r), uint32(g), uint32(b)
}
// Converts any image type to *image.NRGBA with min-point at (0, 0).
func imgToNRGBA(img image.Image) *image.NRGBA {
srcBounds := img.Bounds()
if srcBounds.Min.X == 0 && srcBounds.Min.Y == 0 {
if src0, ok := img.(*image.NRGBA); ok {
return src0
}
}
srcMinX := srcBounds.Min.X
srcMinY := srcBounds.Min.Y
dstBounds := srcBounds.Sub(srcBounds.Min)
dstW := dstBounds.Dx()
dstH := dstBounds.Dy()
dst := image.NewNRGBA(dstBounds)
switch src := img.(type) {
case *image.NRGBA:
rowSize := srcBounds.Dx() * 4
for dstY := 0; dstY < dstH; dstY++ {
di := dst.PixOffset(0, dstY)
si := src.PixOffset(srcMinX, srcMinY+dstY)
for dstX := 0; dstX < dstW; dstX++ {
copy(dst.Pix[di:di+rowSize], src.Pix[si:si+rowSize])
}
}
case *image.YCbCr:
for dstY := 0; dstY < dstH; dstY++ {
di := dst.PixOffset(0, dstY)
for dstX := 0; dstX < dstW; dstX++ {
srcX := srcMinX + dstX
srcY := srcMinY + dstY
siy := src.YOffset(srcX, srcY)
sic := src.COffset(srcX, srcY)
r, g, b := color.YCbCrToRGB(src.Y[siy], src.Cb[sic], src.Cr[sic])
dst.Pix[di+0] = r
dst.Pix[di+1] = g
dst.Pix[di+2] = b
dst.Pix[di+3] = 0xff
di += 4
}
}
default:
for dstY := 0; dstY < dstH; dstY++ {
di := dst.PixOffset(0, dstY)
for dstX := 0; dstX < dstW; dstX++ {
c := color.NRGBAModel.Convert(img.At(srcMinX+dstX, srcMinY+dstY)).(color.NRGBA)
dst.Pix[di+0] = c.R
dst.Pix[di+1] = c.G
dst.Pix[di+2] = c.B
dst.Pix[di+3] = c.A
di += 4
}
}
}
return dst
}

360
stackblur.go Normal file
View File

@@ -0,0 +1,360 @@
// Go implementation of StackBlur algorithm described here:
// http://incubator.quasimondo.com/processing/fast_blur_deluxe.php
package main
import (
"image"
)
// blurStack is a linked list containing the color value and a pointer to the next struct.
type blurStack struct {
r, g, b, a uint32
next *blurStack
}
var mulTable = []uint32{
512, 512, 456, 512, 328, 456, 335, 512, 405, 328, 271, 456, 388, 335, 292, 512,
454, 405, 364, 328, 298, 271, 496, 456, 420, 388, 360, 335, 312, 292, 273, 512,
482, 454, 428, 405, 383, 364, 345, 328, 312, 298, 284, 271, 259, 496, 475, 456,
437, 420, 404, 388, 374, 360, 347, 335, 323, 312, 302, 292, 282, 273, 265, 512,
497, 482, 468, 454, 441, 428, 417, 405, 394, 383, 373, 364, 354, 345, 337, 328,
320, 312, 305, 298, 291, 284, 278, 271, 265, 259, 507, 496, 485, 475, 465, 456,
446, 437, 428, 420, 412, 404, 396, 388, 381, 374, 367, 360, 354, 347, 341, 335,
329, 323, 318, 312, 307, 302, 297, 292, 287, 282, 278, 273, 269, 265, 261, 512,
505, 497, 489, 482, 475, 468, 461, 454, 447, 441, 435, 428, 422, 417, 411, 405,
399, 394, 389, 383, 378, 373, 368, 364, 359, 354, 350, 345, 341, 337, 332, 328,
324, 320, 316, 312, 309, 305, 301, 298, 294, 291, 287, 284, 281, 278, 274, 271,
268, 265, 262, 259, 257, 507, 501, 496, 491, 485, 480, 475, 470, 465, 460, 456,
451, 446, 442, 437, 433, 428, 424, 420, 416, 412, 408, 404, 400, 396, 392, 388,
385, 381, 377, 374, 370, 367, 363, 360, 357, 354, 350, 347, 344, 341, 338, 335,
332, 329, 326, 323, 320, 318, 315, 312, 310, 307, 304, 302, 299, 297, 294, 292,
289, 287, 285, 282, 280, 278, 275, 273, 271, 269, 267, 265, 263, 261, 259,
}
var shgTable = []uint32{
9, 11, 12, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17,
17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19,
19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
}
// NewBlurStack is a constructor function returning a new struct of type blurStack.
func (bs *blurStack) NewBlurStack() *blurStack {
return &blurStack{bs.r, bs.g, bs.b, bs.a, bs.next}
}
// StackBlur applies a blur filter to the provided image.
// The radius defines the bluring average.
func StackBlur(img *image.NRGBA, radius uint32) *image.NRGBA {
var stackEnd, stackIn, stackOut *blurStack
var width, height = uint32(img.Bounds().Dx()), uint32(img.Bounds().Dy())
var (
div, widthMinus1, heightMinus1, radiusPlus1, sumFactor uint32
x, y, i, p, yp, yi, yw,
rSum, gSum, bSum, aSum,
rOutSum, gOutSum, bOutSum, aOutSum,
rInSum, gInSum, bInSum, aInSum,
pr, pg, pb, pa uint32
)
div = radius + radius + 1
widthMinus1 = width - 1
heightMinus1 = height - 1
radiusPlus1 = radius + 1
sumFactor = radiusPlus1 * (radiusPlus1 + 1) / 2
bs := blurStack{}
stackStart := bs.NewBlurStack()
stack := stackStart
for i = 1; i < div; i++ {
stack.next = bs.NewBlurStack()
stack = stack.next
if i == radiusPlus1 {
stackEnd = stack
}
}
stack.next = stackStart
mulSum := mulTable[radius]
shgSum := shgTable[radius]
for y = 0; y < height; y++ {
rInSum, gInSum, bInSum, aInSum, rSum, gSum, bSum, aSum = 0, 0, 0, 0, 0, 0, 0, 0
pr = uint32(img.Pix[yi])
pg = uint32(img.Pix[yi+1])
pb = uint32(img.Pix[yi+2])
pa = uint32(img.Pix[yi+3])
rOutSum = radiusPlus1 * pr
gOutSum = radiusPlus1 * pg
bOutSum = radiusPlus1 * pb
aOutSum = radiusPlus1 * pa
rSum += sumFactor * pr
gSum += sumFactor * pg
bSum += sumFactor * pb
aSum += sumFactor * pa
stack = stackStart
for i = 0; i < radiusPlus1; i++ {
stack.r = pr
stack.g = pg
stack.b = pb
stack.a = pa
stack = stack.next
}
for i = 1; i < radiusPlus1; i++ {
var diff uint32
if widthMinus1 < i {
diff = widthMinus1
} else {
diff = i
}
p = yi + (diff << 2)
pr = uint32(img.Pix[p])
pg = uint32(img.Pix[p+1])
pb = uint32(img.Pix[p+2])
pa = uint32(img.Pix[p+3])
stack.r = pr
stack.g = pg
stack.b = pb
stack.a = pa
rSum += stack.r * (radiusPlus1 - i)
gSum += stack.g * (radiusPlus1 - i)
bSum += stack.b * (radiusPlus1 - i)
aSum += stack.a * (radiusPlus1 - i)
rInSum += pr
gInSum += pg
bInSum += pb
aInSum += pa
stack = stack.next
}
stackIn = stackStart
stackOut = stackEnd
for x = 0; x < width; x++ {
pa = (aSum * mulSum) >> shgSum
img.Pix[yi+3] = uint8(pa)
if pa != 0 {
img.Pix[yi] = uint8((rSum * mulSum) >> shgSum)
img.Pix[yi+1] = uint8((gSum * mulSum) >> shgSum)
img.Pix[yi+2] = uint8((bSum * mulSum) >> shgSum)
} else {
img.Pix[yi] = 0
img.Pix[yi+1] = 0
img.Pix[yi+2] = 0
}
rSum -= rOutSum
gSum -= gOutSum
bSum -= bOutSum
aSum -= aOutSum
rOutSum -= stackIn.r
gOutSum -= stackIn.g
bOutSum -= stackIn.b
aOutSum -= stackIn.a
p = x + radius + 1
if p > widthMinus1 {
p = widthMinus1
}
p = (yw + p) << 2
stackIn.r = uint32(img.Pix[p])
stackIn.g = uint32(img.Pix[p+1])
stackIn.b = uint32(img.Pix[p+2])
stackIn.a = uint32(img.Pix[p+3])
rInSum += stackIn.r
gInSum += stackIn.g
bInSum += stackIn.b
aInSum += stackIn.a
rSum += rInSum
gSum += gInSum
bSum += bInSum
aSum += aInSum
stackIn = stackIn.next
pr = stackOut.r
pg = stackOut.g
pb = stackOut.b
pa = stackOut.a
rOutSum += pr
gOutSum += pg
bOutSum += pb
aOutSum += pa
rInSum -= pr
gInSum -= pg
bInSum -= pb
aInSum -= pa
stackOut = stackOut.next
yi += 4
}
yw += width
}
for x = 0; x < width; x++ {
rInSum, gInSum, bInSum, aInSum, rSum, gSum, bSum, aSum = 0, 0, 0, 0, 0, 0, 0, 0
yi = x << 2
pr = uint32(img.Pix[yi])
pg = uint32(img.Pix[yi+1])
pb = uint32(img.Pix[yi+2])
pa = uint32(img.Pix[yi+3])
rOutSum = radiusPlus1 * pr
gOutSum = radiusPlus1 * pg
bOutSum = radiusPlus1 * pb
aOutSum = radiusPlus1 * pa
rSum += sumFactor * pr
gSum += sumFactor * pg
bSum += sumFactor * pb
aSum += sumFactor * pa
stack = stackStart
for i = 0; i < radiusPlus1; i++ {
stack.r = pr
stack.g = pg
stack.b = pb
stack.a = pa
stack = stack.next
}
yp = width
for i = 1; i <= radius; i++ {
yi = (yp + x) << 2
pr = uint32(img.Pix[yi])
pg = uint32(img.Pix[yi+1])
pb = uint32(img.Pix[yi+2])
pa = uint32(img.Pix[yi+3])
stack.r = pr
stack.g = pg
stack.b = pb
stack.a = pa
rSum += stack.r * (radiusPlus1 - i)
gSum += stack.g * (radiusPlus1 - i)
bSum += stack.b * (radiusPlus1 - i)
aSum += stack.a * (radiusPlus1 - i)
rInSum += pr
gInSum += pg
bInSum += pb
aInSum += pa
stack = stack.next
if i < heightMinus1 {
yp += width
}
}
yi = x
stackIn = stackStart
stackOut = stackEnd
for y = 0; y < height; y++ {
p = yi << 2
pa = (aSum * mulSum) >> shgSum
img.Pix[p+3] = uint8(pa)
if pa > 0 {
img.Pix[p] = uint8((rSum * mulSum) >> shgSum)
img.Pix[p+1] = uint8((gSum * mulSum) >> shgSum)
img.Pix[p+2] = uint8((bSum * mulSum) >> shgSum)
} else {
img.Pix[p] = 0
img.Pix[p+1] = 0
img.Pix[p+2] = 0
}
rSum -= rOutSum
gSum -= gOutSum
bSum -= bOutSum
aSum -= aOutSum
rOutSum -= stackIn.r
gOutSum -= stackIn.g
bOutSum -= stackIn.b
aOutSum -= stackIn.a
p = y + radiusPlus1
if p > heightMinus1 {
p = heightMinus1
}
p = (x + (p * width)) << 2
stackIn.r = uint32(img.Pix[p])
stackIn.g = uint32(img.Pix[p+1])
stackIn.b = uint32(img.Pix[p+2])
stackIn.a = uint32(img.Pix[p+3])
rInSum += stackIn.r
gInSum += stackIn.g
bInSum += stackIn.b
aInSum += stackIn.a
rSum += rInSum
gSum += gInSum
bSum += bInSum
aSum += aInSum
stackIn = stackIn.next
pr = stackOut.r
pg = stackOut.g
pb = stackOut.b
pa = stackOut.a
rOutSum += pr
gOutSum += pg
bOutSum += pb
aOutSum += pa
rInSum -= pr
gInSum -= pg
bInSum -= pb
aInSum -= pa
stackOut = stackOut.next
yi += width
}
}
return img
}