mirror of
https://github.com/kerberos-io/openalpr-base.git
synced 2025-10-06 06:36:50 +08:00
Reorganized the detection interface to simplify code and reduce boilerplate
This commit is contained in:
@@ -64,9 +64,80 @@ namespace alpr
|
||||
|
||||
vector<PlateRegion> Detector::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest)
|
||||
{
|
||||
// Must be implemented by subclass
|
||||
std::vector<PlateRegion> rois;
|
||||
return rois;
|
||||
|
||||
Mat frame_gray;
|
||||
|
||||
if (frame.channels() > 2)
|
||||
{
|
||||
cvtColor( frame, frame_gray, CV_BGR2GRAY );
|
||||
}
|
||||
else
|
||||
{
|
||||
frame.copyTo(frame_gray);
|
||||
}
|
||||
|
||||
// Apply the detection mask if it has been specified by the user
|
||||
if (detector_mask.mask_loaded)
|
||||
frame_gray = detector_mask.apply_mask(frame_gray);
|
||||
|
||||
vector<PlateRegion> detectedRegions;
|
||||
for (int i = 0; i < regionsOfInterest.size(); i++)
|
||||
{
|
||||
Rect roi = regionsOfInterest[i];
|
||||
|
||||
// Adjust the ROI to be inside the detection mask (if it exists)
|
||||
if (detector_mask.mask_loaded)
|
||||
roi = detector_mask.getRoiInsideMask(roi);
|
||||
|
||||
// Sanity check. If roi width or height is less than minimum possible plate size,
|
||||
// then skip it
|
||||
if ((roi.width < config->minPlateSizeWidthPx) ||
|
||||
(roi.height < config->minPlateSizeHeightPx))
|
||||
continue;
|
||||
|
||||
Mat cropped = frame_gray(roi);
|
||||
|
||||
int w = cropped.size().width;
|
||||
int h = cropped.size().height;
|
||||
int offset_x = roi.x;
|
||||
int offset_y = roi.y;
|
||||
float scale_factor = computeScaleFactor(w, h);
|
||||
|
||||
if (scale_factor != 1.0)
|
||||
resize(cropped, cropped, Size(w * scale_factor, h * scale_factor));
|
||||
|
||||
|
||||
float maxWidth = ((float) w) * (config->maxPlateWidthPercent / 100.0f) * scale_factor;
|
||||
float maxHeight = ((float) h) * (config->maxPlateHeightPercent / 100.0f) * scale_factor;
|
||||
Size minPlateSize(config->minPlateSizeWidthPx * scale_factor, config->minPlateSizeHeightPx * scale_factor);
|
||||
Size maxPlateSize(maxWidth, maxHeight);
|
||||
|
||||
vector<Rect> allRegions = find_plates(cropped, minPlateSize, maxPlateSize);
|
||||
|
||||
// Aggregate the Rect regions into a hierarchical representation
|
||||
for( unsigned int i = 0; i < allRegions.size(); i++ )
|
||||
{
|
||||
allRegions[i].x = (allRegions[i].x / scale_factor);
|
||||
allRegions[i].y = (allRegions[i].y / scale_factor);
|
||||
allRegions[i].width = allRegions[i].width / scale_factor;
|
||||
allRegions[i].height = allRegions[i].height / scale_factor;
|
||||
|
||||
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
|
||||
allRegions[i] = expandRect(allRegions[i], 0, 0, w, h);
|
||||
|
||||
allRegions[i].x = allRegions[i].x + offset_x;
|
||||
allRegions[i].y = allRegions[i].y + offset_y;
|
||||
}
|
||||
|
||||
vector<PlateRegion> orderedRegions = aggregateRegions(allRegions);
|
||||
|
||||
|
||||
|
||||
for (int j = 0; j < orderedRegions.size(); j++)
|
||||
detectedRegions.push_back(orderedRegions[j]);
|
||||
}
|
||||
|
||||
return detectedRegions;
|
||||
}
|
||||
|
||||
std::string Detector::get_detector_file() {
|
||||
|
@@ -45,9 +45,9 @@ namespace alpr
|
||||
|
||||
bool isLoaded();
|
||||
std::vector<PlateRegion> detect(cv::Mat frame);
|
||||
virtual std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
|
||||
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
|
||||
|
||||
//virtual std::vector<cv::Rect> find_plates(cv::Mat frame)=0;
|
||||
virtual std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size)=0;
|
||||
|
||||
void setMask(cv::Mat mask);
|
||||
|
||||
|
@@ -45,77 +45,24 @@ namespace alpr
|
||||
DetectorCPU::~DetectorCPU() {
|
||||
}
|
||||
|
||||
vector<PlateRegion> DetectorCPU::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest)
|
||||
{
|
||||
|
||||
Mat frame_gray;
|
||||
|
||||
if (frame.channels() > 2)
|
||||
{
|
||||
cvtColor( frame, frame_gray, CV_BGR2GRAY );
|
||||
}
|
||||
else
|
||||
{
|
||||
frame.copyTo(frame_gray);
|
||||
}
|
||||
|
||||
// Apply the detection mask if it has been specified by the user
|
||||
if (detector_mask.mask_loaded)
|
||||
frame_gray = detector_mask.apply_mask(frame_gray);
|
||||
|
||||
vector<PlateRegion> detectedRegions;
|
||||
for (int i = 0; i < regionsOfInterest.size(); i++)
|
||||
{
|
||||
Rect roi = regionsOfInterest[i];
|
||||
|
||||
// Adjust the ROI to be inside the detection mask (if it exists)
|
||||
if (detector_mask.mask_loaded)
|
||||
roi = detector_mask.getRoiInsideMask(roi);
|
||||
|
||||
// Sanity check. If roi width or height is less than minimum possible plate size,
|
||||
// then skip it
|
||||
if ((roi.width < config->minPlateSizeWidthPx) ||
|
||||
(roi.height < config->minPlateSizeHeightPx))
|
||||
continue;
|
||||
|
||||
Mat cropped = frame_gray(roi);
|
||||
vector<PlateRegion> subRegions = doCascade(cropped, roi.x, roi.y);
|
||||
|
||||
for (int j = 0; j < subRegions.size(); j++)
|
||||
detectedRegions.push_back(subRegions[j]);
|
||||
}
|
||||
return detectedRegions;
|
||||
}
|
||||
|
||||
|
||||
vector<PlateRegion> DetectorCPU::doCascade(Mat frame, int offset_x, int offset_y)
|
||||
vector<Rect> DetectorCPU::find_plates(Mat frame, cv::Size min_plate_size, cv::Size max_plate_size)
|
||||
{
|
||||
|
||||
int w = frame.size().width;
|
||||
int h = frame.size().height;
|
||||
|
||||
float scale_factor = computeScaleFactor(w, h);
|
||||
|
||||
vector<Rect> plates;
|
||||
|
||||
equalizeHist( frame, frame );
|
||||
|
||||
if (scale_factor != 1.0)
|
||||
resize(frame, frame, Size(w * scale_factor, h * scale_factor));
|
||||
|
||||
|
||||
//-- Detect plates
|
||||
timespec startTime;
|
||||
getTimeMonotonic(&startTime);
|
||||
|
||||
float maxWidth = ((float) w) * (config->maxPlateWidthPercent / 100.0f) * scale_factor;
|
||||
float maxHeight = ((float) h) * (config->maxPlateHeightPercent / 100.0f) * scale_factor;
|
||||
Size minSize(config->minPlateSizeWidthPx * scale_factor, config->minPlateSizeHeightPx * scale_factor);
|
||||
Size maxSize(maxWidth, maxHeight);
|
||||
equalizeHist( frame, frame );
|
||||
|
||||
plate_cascade.detectMultiScale( frame, plates, config->detection_iteration_increase, config->detectionStrictness,
|
||||
CV_HAAR_DO_CANNY_PRUNING,
|
||||
//0|CV_HAAR_SCALE_IMAGE,
|
||||
minSize, maxSize );
|
||||
min_plate_size, max_plate_size );
|
||||
|
||||
|
||||
if (config->debugTiming)
|
||||
@@ -125,23 +72,7 @@ namespace alpr
|
||||
cout << "LBP Time: " << diffclock(startTime, endTime) << "ms." << endl;
|
||||
}
|
||||
|
||||
for( unsigned int i = 0; i < plates.size(); i++ )
|
||||
{
|
||||
plates[i].x = (plates[i].x / scale_factor);
|
||||
plates[i].y = (plates[i].y / scale_factor);
|
||||
plates[i].width = plates[i].width / scale_factor;
|
||||
plates[i].height = plates[i].height / scale_factor;
|
||||
|
||||
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
|
||||
plates[i] = expandRect(plates[i], 0, 0, w, h);
|
||||
|
||||
plates[i].x = plates[i].x + offset_x;
|
||||
plates[i].y = plates[i].y + offset_y;
|
||||
}
|
||||
|
||||
vector<PlateRegion> orderedRegions = aggregateRegions(plates);
|
||||
|
||||
return orderedRegions;
|
||||
return plates;
|
||||
|
||||
}
|
||||
|
||||
|
@@ -39,13 +39,12 @@ namespace alpr
|
||||
DetectorCPU(Config* config, PreWarp* prewarp);
|
||||
virtual ~DetectorCPU();
|
||||
|
||||
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
|
||||
|
||||
std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size);
|
||||
|
||||
private:
|
||||
|
||||
cv::CascadeClassifier plate_cascade;
|
||||
|
||||
std::vector<PlateRegion> doCascade(cv::Mat frame, int offset_x, int offset_y);
|
||||
};
|
||||
|
||||
}
|
||||
|
@@ -19,7 +19,6 @@
|
||||
|
||||
#include "detectorcuda.h"
|
||||
|
||||
|
||||
#ifdef COMPILE_GPU
|
||||
|
||||
using namespace cv;
|
||||
@@ -49,60 +48,22 @@ namespace alpr
|
||||
DetectorCUDA::~DetectorCUDA() {
|
||||
}
|
||||
|
||||
vector<PlateRegion> DetectorCUDA::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest)
|
||||
vector<Rect> DetectorCUDA::find_plates(Mat frame, cv::Size min_plate_size, cv::Size max_plate_size)
|
||||
{
|
||||
|
||||
Mat frame_gray;
|
||||
|
||||
if (frame.channels() > 2)
|
||||
{
|
||||
cvtColor( frame, frame_gray, CV_BGR2GRAY );
|
||||
}
|
||||
else
|
||||
{
|
||||
frame.copyTo(frame_gray);
|
||||
}
|
||||
|
||||
vector<PlateRegion> detectedRegions;
|
||||
for (int i = 0; i < regionsOfInterest.size(); i++)
|
||||
{
|
||||
Mat cropped = frame_gray(regionsOfInterest[i]);
|
||||
vector<PlateRegion> subRegions = doCascade(cropped, regionsOfInterest[i].x, regionsOfInterest[i].y);
|
||||
|
||||
for (int j = 0; j < subRegions.size(); j++)
|
||||
detectedRegions.push_back(subRegions[j]);
|
||||
}
|
||||
return detectedRegions;
|
||||
}
|
||||
|
||||
vector<PlateRegion> DetectorCUDA::doCascade(Mat frame, int offset_x, int offset_y)
|
||||
{
|
||||
|
||||
int w = frame.size().width;
|
||||
int h = frame.size().height;
|
||||
|
||||
float scale_factor = computeScaleFactor(w, h);
|
||||
|
||||
vector<Rect> plates;
|
||||
|
||||
equalizeHist( frame, frame );
|
||||
|
||||
if (scale_factor != 1.0)
|
||||
resize(frame, frame, Size(w * scale_factor, h * scale_factor));
|
||||
|
||||
//-- Detect plates
|
||||
vector<Rect> plates;
|
||||
|
||||
timespec startTime;
|
||||
getTimeMonotonic(&startTime);
|
||||
|
||||
float maxWidth = ((float) w) * (config->maxPlateWidthPercent / 100.0f) * scale_factor;
|
||||
float maxHeight = ((float) h) * (config->maxPlateHeightPercent / 100.0f) * scale_factor;
|
||||
Size minSize(config->minPlateSizeWidthPx * scale_factor, config->minPlateSizeHeightPx * scale_factor);
|
||||
|
||||
gpu::GpuMat cudaFrame, plateregions_buffer;
|
||||
Mat plateregions_downloaded;
|
||||
|
||||
cudaFrame.upload(frame);
|
||||
int numdetected = cuda_cascade.detectMultiScale(cudaFrame, plateregions_buffer, (double) config->detection_iteration_increase, config->detectionStrictness, minSize);
|
||||
int numdetected = cuda_cascade.detectMultiScale(cudaFrame, plateregions_buffer,
|
||||
(double) config->detection_iteration_increase, config->detectionStrictness,
|
||||
min_plate_size);
|
||||
|
||||
plateregions_buffer.colRange(0, numdetected).download(plateregions_downloaded);
|
||||
|
||||
for (int i = 0; i < numdetected; ++i)
|
||||
@@ -110,33 +71,14 @@ namespace alpr
|
||||
plates.push_back(plateregions_downloaded.ptr<cv::Rect>()[i]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (config->debugTiming)
|
||||
{
|
||||
timespec endTime;
|
||||
getTimeMonotonic(&endTime);
|
||||
cout << "LBP Time: " << diffclock(startTime, endTime) << "ms." << endl;
|
||||
}
|
||||
|
||||
for( unsigned int i = 0; i < plates.size(); i++ )
|
||||
{
|
||||
plates[i].x = (plates[i].x / scale_factor);
|
||||
plates[i].y = (plates[i].y / scale_factor);
|
||||
plates[i].width = plates[i].width / scale_factor;
|
||||
plates[i].height = plates[i].height / scale_factor;
|
||||
|
||||
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
|
||||
plates[i] = expandRect(plates[i], 0, 0, w, h);
|
||||
|
||||
plates[i].x = plates[i].x + offset_x;
|
||||
plates[i].y = plates[i].y + offset_y;
|
||||
}
|
||||
|
||||
vector<PlateRegion> orderedRegions = aggregateRegions(plates);
|
||||
|
||||
return orderedRegions;
|
||||
|
||||
|
||||
return plates;
|
||||
}
|
||||
|
||||
}
|
||||
|
@@ -46,13 +46,12 @@ namespace alpr
|
||||
DetectorCUDA(Config* config, PreWarp* prewarp);
|
||||
virtual ~DetectorCUDA();
|
||||
|
||||
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
|
||||
std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size);
|
||||
|
||||
private:
|
||||
|
||||
cv::gpu::CascadeClassifier_GPU cuda_cascade;
|
||||
|
||||
std::vector<PlateRegion> doCascade(cv::Mat frame, int offset_x, int offset_y);
|
||||
};
|
||||
|
||||
}
|
||||
|
@@ -47,171 +47,160 @@ namespace alpr {
|
||||
|
||||
}
|
||||
|
||||
vector<PlateRegion> DetectorMorph::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest) {
|
||||
|
||||
Mat frame_gray,frame_gray_cp;
|
||||
|
||||
if (frame.channels() > 2)
|
||||
{
|
||||
cvtColor( frame, frame_gray, CV_BGR2GRAY );
|
||||
}
|
||||
else
|
||||
{
|
||||
frame.copyTo(frame_gray);
|
||||
}
|
||||
std::vector<cv::Rect> DetectorMorph::find_plates(cv::Mat frame_gray, cv::Size min_plate_size, cv::Size max_plate_size)
|
||||
{
|
||||
|
||||
Mat frame_gray_cp(frame_gray.size(), frame_gray.type());
|
||||
frame_gray.copyTo(frame_gray_cp);
|
||||
blur(frame_gray, frame_gray, Size(5, 5));
|
||||
|
||||
vector<PlateRegion> detectedRegions;
|
||||
for (int i = 0; i < regionsOfInterest.size(); i++) {
|
||||
Mat img_open, img_result;
|
||||
Mat element = getStructuringElement(MORPH_RECT, Size(30, 4));
|
||||
morphologyEx(frame_gray, img_open, CV_MOP_OPEN, element, cv::Point(-1, -1));
|
||||
vector<Rect> plates;
|
||||
|
||||
Mat img_open, img_result;
|
||||
Mat element = getStructuringElement(MORPH_RECT, Size(30, 4));
|
||||
morphologyEx(frame_gray, img_open, CV_MOP_OPEN, element, cv::Point(-1, -1));
|
||||
|
||||
img_result = frame_gray - img_open;
|
||||
img_result = frame_gray - img_open;
|
||||
|
||||
if (config->debugDetector && config->debugShowImages) {
|
||||
imshow("Opening", img_result);
|
||||
if (config->debugDetector && config->debugShowImages) {
|
||||
imshow("Opening", img_result);
|
||||
}
|
||||
|
||||
//threshold image using otsu thresholding
|
||||
Mat img_threshold, img_open2;
|
||||
threshold(img_result, img_threshold, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
|
||||
|
||||
if (config->debugDetector && config->debugShowImages) {
|
||||
imshow("Threshold Detector", img_threshold);
|
||||
}
|
||||
|
||||
Mat diamond(5, 5, CV_8U, cv::Scalar(1));
|
||||
|
||||
diamond.at<uchar>(0, 0) = 0;
|
||||
diamond.at<uchar>(0, 1) = 0;
|
||||
diamond.at<uchar>(1, 0) = 0;
|
||||
diamond.at<uchar>(4, 4) = 0;
|
||||
diamond.at<uchar>(3, 4) = 0;
|
||||
diamond.at<uchar>(4, 3) = 0;
|
||||
diamond.at<uchar>(4, 0) = 0;
|
||||
diamond.at<uchar>(4, 1) = 0;
|
||||
diamond.at<uchar>(3, 0) = 0;
|
||||
diamond.at<uchar>(0, 4) = 0;
|
||||
diamond.at<uchar>(0, 3) = 0;
|
||||
diamond.at<uchar>(1, 4) = 0;
|
||||
|
||||
morphologyEx(img_threshold, img_open2, CV_MOP_OPEN, diamond, cv::Point(-1, -1));
|
||||
Mat rectElement = getStructuringElement(cv::MORPH_RECT, Size(13, 4));
|
||||
morphologyEx(img_open2, img_threshold, CV_MOP_CLOSE, rectElement, cv::Point(-1, -1));
|
||||
|
||||
if (config->debugDetector && config->debugShowImages) {
|
||||
imshow("Close", img_threshold);
|
||||
waitKey(0);
|
||||
}
|
||||
|
||||
//Find contours of possibles plates
|
||||
vector< vector< Point> > contours;
|
||||
findContours(img_threshold,
|
||||
contours, // a vector of contours
|
||||
CV_RETR_EXTERNAL, // retrieve the external contours
|
||||
CV_CHAIN_APPROX_NONE); // all pixels of each contours
|
||||
|
||||
//Start to iterate to each contour founded
|
||||
vector<vector<Point> >::iterator itc = contours.begin();
|
||||
vector<RotatedRect> rects;
|
||||
|
||||
//Remove patch that are no inside limits of aspect ratio and area.
|
||||
while (itc != contours.end()) {
|
||||
//Create bounding rect of object
|
||||
RotatedRect mr = minAreaRect(Mat(*itc));
|
||||
|
||||
if (mr.angle < -45.) {
|
||||
mr.angle += 90.0;
|
||||
swap(mr.size.width, mr.size.height);
|
||||
}
|
||||
|
||||
if (!CheckSizes(mr))
|
||||
itc = contours.erase(itc);
|
||||
else {
|
||||
++itc;
|
||||
rects.push_back(mr);
|
||||
}
|
||||
}
|
||||
|
||||
//Now prunning based on checking all candidate plates for a min/max number of blobsc
|
||||
Mat img_crop, img_crop_b, img_crop_th, img_crop_th_inv;
|
||||
vector< vector< Point> > plateBlobs;
|
||||
vector< vector< Point> > plateBlobsInv;
|
||||
double thresholds[] = { 10, 40, 80, 120, 160, 200, 240 };
|
||||
const int num_thresholds = 7;
|
||||
int numValidChars = 0;
|
||||
Mat rotated;
|
||||
for (int i = 0; i < rects.size(); i++) {
|
||||
numValidChars = 0;
|
||||
RotatedRect PlateRect = rects[i];
|
||||
Size rect_size = PlateRect.size;
|
||||
|
||||
// get the rotation matrix
|
||||
Mat M = getRotationMatrix2D(PlateRect.center, PlateRect.angle, 1.0);
|
||||
// perform the affine transformation
|
||||
warpAffine(frame_gray_cp, rotated, M, frame_gray_cp.size(), INTER_CUBIC);
|
||||
//Crop area around candidate plate
|
||||
getRectSubPix(rotated, rect_size, PlateRect.center, img_crop);
|
||||
|
||||
if (config->debugDetector && config->debugShowImages) {
|
||||
imshow("Tilt Correction", img_crop);
|
||||
waitKey(0);
|
||||
}
|
||||
|
||||
//threshold image using otsu thresholding
|
||||
Mat img_threshold, img_open2;
|
||||
threshold(img_result, img_threshold, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
|
||||
for (int z = 0; z < num_thresholds; z++) {
|
||||
|
||||
if (config->debugDetector && config->debugShowImages) {
|
||||
imshow("Threshold Detector", img_threshold);
|
||||
}
|
||||
cv::threshold(img_crop, img_crop_th, thresholds[z], 255, cv::THRESH_BINARY);
|
||||
cv::threshold(img_crop, img_crop_th_inv, thresholds[z], 255, cv::THRESH_BINARY_INV);
|
||||
|
||||
Mat diamond(5, 5, CV_8U, cv::Scalar(1));
|
||||
findContours(img_crop_th,
|
||||
plateBlobs, // a vector of contours
|
||||
CV_RETR_LIST, // retrieve the contour list
|
||||
CV_CHAIN_APPROX_NONE); // all pixels of each contours
|
||||
|
||||
diamond.at<uchar>(0, 0) = 0;
|
||||
diamond.at<uchar>(0, 1) = 0;
|
||||
diamond.at<uchar>(1, 0) = 0;
|
||||
diamond.at<uchar>(4, 4) = 0;
|
||||
diamond.at<uchar>(3, 4) = 0;
|
||||
diamond.at<uchar>(4, 3) = 0;
|
||||
diamond.at<uchar>(4, 0) = 0;
|
||||
diamond.at<uchar>(4, 1) = 0;
|
||||
diamond.at<uchar>(3, 0) = 0;
|
||||
diamond.at<uchar>(0, 4) = 0;
|
||||
diamond.at<uchar>(0, 3) = 0;
|
||||
diamond.at<uchar>(1, 4) = 0;
|
||||
|
||||
morphologyEx(img_threshold, img_open2, CV_MOP_OPEN, diamond, cv::Point(-1, -1));
|
||||
Mat rectElement = getStructuringElement(cv::MORPH_RECT, Size(13, 4));
|
||||
morphologyEx(img_open2, img_threshold, CV_MOP_CLOSE, rectElement, cv::Point(-1, -1));
|
||||
findContours(img_crop_th_inv,
|
||||
plateBlobsInv, // a vector of contours
|
||||
CV_RETR_LIST, // retrieve the contour list
|
||||
CV_CHAIN_APPROX_NONE); // all pixels of each contours
|
||||
|
||||
if (config->debugDetector && config->debugShowImages) {
|
||||
imshow("Close", img_threshold);
|
||||
waitKey(0);
|
||||
}
|
||||
int numBlobs = plateBlobs.size();
|
||||
int numBlobsInv = plateBlobsInv.size();
|
||||
|
||||
//Find contours of possibles plates
|
||||
vector< vector< Point> > contours;
|
||||
findContours(img_threshold,
|
||||
contours, // a vector of contours
|
||||
CV_RETR_EXTERNAL, // retrieve the external contours
|
||||
CV_CHAIN_APPROX_NONE); // all pixels of each contours
|
||||
float idealAspect = config->avgCharWidthMM / config->avgCharHeightMM;
|
||||
for (int j = 0; j < numBlobs; j++) {
|
||||
cv::Rect r0 = cv::boundingRect(cv::Mat(plateBlobs[j]));
|
||||
|
||||
//Start to iterate to each contour founded
|
||||
vector<vector<Point> >::iterator itc = contours.begin();
|
||||
vector<RotatedRect> rects;
|
||||
if (ValidateCharAspect(r0, idealAspect))
|
||||
numValidChars++;
|
||||
}
|
||||
|
||||
//Remove patch that are no inside limits of aspect ratio and area.
|
||||
while (itc != contours.end()) {
|
||||
//Create bounding rect of object
|
||||
RotatedRect mr = minAreaRect(Mat(*itc));
|
||||
|
||||
if (mr.angle < -45.) {
|
||||
mr.angle += 90.0;
|
||||
swap(mr.size.width, mr.size.height);
|
||||
}
|
||||
|
||||
if (!CheckSizes(mr))
|
||||
itc = contours.erase(itc);
|
||||
else {
|
||||
++itc;
|
||||
rects.push_back(mr);
|
||||
}
|
||||
}
|
||||
|
||||
//Now prunning based on checking all candidate plates for a min/max number of blobsc
|
||||
Mat img_crop, img_crop_b, img_crop_th, img_crop_th_inv;
|
||||
vector< vector< Point> > plateBlobs;
|
||||
vector< vector< Point> > plateBlobsInv;
|
||||
double thresholds[] = { 10, 40, 80, 120, 160, 200, 240 };
|
||||
const int num_thresholds = 7;
|
||||
int numValidChars = 0;
|
||||
Mat rotated;
|
||||
for (int i = 0; i < rects.size(); i++) {
|
||||
numValidChars = 0;
|
||||
RotatedRect PlateRect = rects[i];
|
||||
Size rect_size = PlateRect.size;
|
||||
|
||||
// get the rotation matrix
|
||||
Mat M = getRotationMatrix2D(PlateRect.center, PlateRect.angle, 1.0);
|
||||
// perform the affine transformation
|
||||
warpAffine(frame_gray_cp, rotated, M, frame_gray_cp.size(), INTER_CUBIC);
|
||||
//Crop area around candidate plate
|
||||
getRectSubPix(rotated, rect_size, PlateRect.center, img_crop);
|
||||
|
||||
if (config->debugDetector && config->debugShowImages) {
|
||||
imshow("Tilt Correction", img_crop);
|
||||
waitKey(0);
|
||||
}
|
||||
|
||||
for (int z = 0; z < num_thresholds; z++) {
|
||||
|
||||
cv::threshold(img_crop, img_crop_th, thresholds[z], 255, cv::THRESH_BINARY);
|
||||
cv::threshold(img_crop, img_crop_th_inv, thresholds[z], 255, cv::THRESH_BINARY_INV);
|
||||
|
||||
findContours(img_crop_th,
|
||||
plateBlobs, // a vector of contours
|
||||
CV_RETR_LIST, // retrieve the contour list
|
||||
CV_CHAIN_APPROX_NONE); // all pixels of each contours
|
||||
|
||||
findContours(img_crop_th_inv,
|
||||
plateBlobsInv, // a vector of contours
|
||||
CV_RETR_LIST, // retrieve the contour list
|
||||
CV_CHAIN_APPROX_NONE); // all pixels of each contours
|
||||
|
||||
int numBlobs = plateBlobs.size();
|
||||
int numBlobsInv = plateBlobsInv.size();
|
||||
|
||||
float idealAspect = config->avgCharWidthMM / config->avgCharHeightMM;
|
||||
for (int j = 0; j < numBlobs; j++) {
|
||||
cv::Rect r0 = cv::boundingRect(cv::Mat(plateBlobs[j]));
|
||||
|
||||
if (ValidateCharAspect(r0, idealAspect))
|
||||
numValidChars++;
|
||||
}
|
||||
|
||||
for (int j = 0; j < numBlobsInv; j++) {
|
||||
cv::Rect r0 = cv::boundingRect(cv::Mat(plateBlobsInv[j]));
|
||||
if (ValidateCharAspect(r0, idealAspect))
|
||||
numValidChars++;
|
||||
}
|
||||
|
||||
}
|
||||
//If too much or too lcittle might not be a true plate
|
||||
//if (numBlobs < 3 || numBlobs > 50) continue;
|
||||
if (numValidChars < 4 || numValidChars > 50) continue;
|
||||
|
||||
PlateRegion PlateReg;
|
||||
|
||||
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
|
||||
Rect bounding_rect = PlateRect.boundingRect();
|
||||
PlateReg.rect = expandRect(bounding_rect, 0, 0, frame.cols, frame.rows);
|
||||
|
||||
|
||||
detectedRegions.push_back(PlateReg);
|
||||
for (int j = 0; j < numBlobsInv; j++) {
|
||||
cv::Rect r0 = cv::boundingRect(cv::Mat(plateBlobsInv[j]));
|
||||
if (ValidateCharAspect(r0, idealAspect))
|
||||
numValidChars++;
|
||||
}
|
||||
|
||||
}
|
||||
//If too much or too lcittle might not be a true plate
|
||||
//if (numBlobs < 3 || numBlobs > 50) continue;
|
||||
if (numValidChars < 4 || numValidChars > 50) continue;
|
||||
|
||||
PlateRegion PlateReg;
|
||||
|
||||
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
|
||||
Rect bounding_rect = PlateRect.boundingRect();
|
||||
|
||||
Rect rect_expanded = expandRect(bounding_rect, 0, 0, frame_gray.cols, frame_gray.rows);
|
||||
|
||||
plates.push_back(rect_expanded);
|
||||
|
||||
}
|
||||
|
||||
return detectedRegions;
|
||||
return plates;
|
||||
}
|
||||
|
||||
bool DetectorMorph::CheckSizes(RotatedRect& mr) {
|
||||
|
@@ -38,7 +38,7 @@ namespace alpr {
|
||||
DetectorMorph(Config* config, PreWarp* prewarp);
|
||||
virtual ~DetectorMorph();
|
||||
|
||||
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
|
||||
std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size);
|
||||
|
||||
private:
|
||||
bool CheckSizes(cv::RotatedRect& mr);
|
||||
|
@@ -98,47 +98,10 @@ namespace alpr
|
||||
DetectorOCL::~DetectorOCL() {
|
||||
}
|
||||
|
||||
vector<PlateRegion> DetectorOCL::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest)
|
||||
|
||||
vector<Rect> DetectorOCL::find_plates(Mat orig_frame, cv::Size min_plate_size, cv::Size max_plate_size)
|
||||
{
|
||||
|
||||
Mat frame_gray;
|
||||
|
||||
if (frame.channels() > 2)
|
||||
{
|
||||
cvtColor( frame, frame_gray, CV_BGR2GRAY );
|
||||
}
|
||||
else
|
||||
{
|
||||
frame.copyTo(frame_gray);
|
||||
}
|
||||
|
||||
|
||||
vector<PlateRegion> detectedRegions;
|
||||
for (int i = 0; i < regionsOfInterest.size(); i++)
|
||||
{
|
||||
// Sanity check. If roi width or height is less than minimum possible plate size,
|
||||
// then skip it
|
||||
if ((regionsOfInterest[i].width < config->minPlateSizeWidthPx) ||
|
||||
(regionsOfInterest[i].height < config->minPlateSizeHeightPx))
|
||||
continue;
|
||||
|
||||
Mat cropped = frame_gray(regionsOfInterest[i]);
|
||||
vector<PlateRegion> subRegions = doCascade(cropped, regionsOfInterest[i].x, regionsOfInterest[i].y);
|
||||
|
||||
for (int j = 0; j < subRegions.size(); j++)
|
||||
detectedRegions.push_back(subRegions[j]);
|
||||
}
|
||||
return detectedRegions;
|
||||
}
|
||||
|
||||
vector<PlateRegion> DetectorOCL::doCascade(Mat orig_frame, int offset_x, int offset_y)
|
||||
{
|
||||
|
||||
|
||||
int w = orig_frame.size().width;
|
||||
int h = orig_frame.size().height;
|
||||
|
||||
float scale_factor = computeScaleFactor(w, h);
|
||||
|
||||
vector<Rect> plates;
|
||||
|
||||
@@ -146,12 +109,6 @@ namespace alpr
|
||||
timespec startTime;
|
||||
getTimeMonotonic(&startTime);
|
||||
|
||||
float maxWidth = ((float) w) * (config->maxPlateWidthPercent / 100.0f) * scale_factor;
|
||||
float maxHeight = ((float) h) * (config->maxPlateHeightPercent / 100.0f) * scale_factor;
|
||||
|
||||
Size minSize(config->minPlateSizeWidthPx * scale_factor, config->minPlateSizeHeightPx * scale_factor);
|
||||
Size maxSize(maxWidth, maxHeight);
|
||||
|
||||
// If we have an OpenCL core available, use it. Otherwise use CPU
|
||||
if (ocl_detector_mutex_m.try_lock())
|
||||
{
|
||||
@@ -160,12 +117,9 @@ namespace alpr
|
||||
|
||||
equalizeHist( openclFrame, openclFrame );
|
||||
|
||||
if (scale_factor != 1.0)
|
||||
resize(openclFrame, openclFrame, Size(w * scale_factor, h * scale_factor));
|
||||
|
||||
plate_cascade.detectMultiScale( openclFrame, plates, config->detection_iteration_increase, config->detectionStrictness,
|
||||
0,
|
||||
minSize, maxSize );
|
||||
min_plate_size, max_plate_size );
|
||||
|
||||
ocl_detector_mutex_m.unlock();
|
||||
}
|
||||
@@ -173,18 +127,12 @@ namespace alpr
|
||||
{
|
||||
equalizeHist( orig_frame, orig_frame );
|
||||
|
||||
if (scale_factor != 1.0)
|
||||
resize(orig_frame, orig_frame, Size(w * scale_factor, h * scale_factor));
|
||||
|
||||
plate_cascade.detectMultiScale( orig_frame, plates, config->detection_iteration_increase, config->detectionStrictness,
|
||||
0,
|
||||
minSize, maxSize );
|
||||
min_plate_size, max_plate_size );
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if (config->debugTiming)
|
||||
{
|
||||
timespec endTime;
|
||||
@@ -192,23 +140,8 @@ namespace alpr
|
||||
cout << "LBP Time: " << diffclock(startTime, endTime) << "ms." << endl;
|
||||
}
|
||||
|
||||
for( unsigned int i = 0; i < plates.size(); i++ )
|
||||
{
|
||||
plates[i].x = (plates[i].x / scale_factor);
|
||||
plates[i].y = (plates[i].y / scale_factor);
|
||||
plates[i].width = plates[i].width / scale_factor;
|
||||
plates[i].height = plates[i].height / scale_factor;
|
||||
return plates;
|
||||
|
||||
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
|
||||
plates[i] = expandRect(plates[i], 0, 0, w, h);
|
||||
|
||||
plates[i].x = plates[i].x + offset_x;
|
||||
plates[i].y = plates[i].y + offset_y;
|
||||
}
|
||||
|
||||
vector<PlateRegion> orderedRegions = aggregateRegions(plates);
|
||||
|
||||
return orderedRegions;
|
||||
|
||||
}
|
||||
|
||||
|
@@ -42,13 +42,12 @@ namespace alpr
|
||||
DetectorOCL(Config* config, PreWarp* prewarp);
|
||||
virtual ~DetectorOCL();
|
||||
|
||||
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
|
||||
std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size);
|
||||
|
||||
private:
|
||||
|
||||
cv::CascadeClassifier plate_cascade;
|
||||
|
||||
std::vector<PlateRegion> doCascade(cv::Mat frame, int offset_x, int offset_y);
|
||||
};
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user