Reorganized the detection interface to simplify code and reduce boilerplate

This commit is contained in:
Matt Hill
2016-03-14 23:03:17 -04:00
parent a0dff3d2af
commit 4741299740
10 changed files with 234 additions and 371 deletions

View File

@@ -64,9 +64,80 @@ namespace alpr
vector<PlateRegion> Detector::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest)
{
// Must be implemented by subclass
std::vector<PlateRegion> rois;
return rois;
Mat frame_gray;
if (frame.channels() > 2)
{
cvtColor( frame, frame_gray, CV_BGR2GRAY );
}
else
{
frame.copyTo(frame_gray);
}
// Apply the detection mask if it has been specified by the user
if (detector_mask.mask_loaded)
frame_gray = detector_mask.apply_mask(frame_gray);
vector<PlateRegion> detectedRegions;
for (int i = 0; i < regionsOfInterest.size(); i++)
{
Rect roi = regionsOfInterest[i];
// Adjust the ROI to be inside the detection mask (if it exists)
if (detector_mask.mask_loaded)
roi = detector_mask.getRoiInsideMask(roi);
// Sanity check. If roi width or height is less than minimum possible plate size,
// then skip it
if ((roi.width < config->minPlateSizeWidthPx) ||
(roi.height < config->minPlateSizeHeightPx))
continue;
Mat cropped = frame_gray(roi);
int w = cropped.size().width;
int h = cropped.size().height;
int offset_x = roi.x;
int offset_y = roi.y;
float scale_factor = computeScaleFactor(w, h);
if (scale_factor != 1.0)
resize(cropped, cropped, Size(w * scale_factor, h * scale_factor));
float maxWidth = ((float) w) * (config->maxPlateWidthPercent / 100.0f) * scale_factor;
float maxHeight = ((float) h) * (config->maxPlateHeightPercent / 100.0f) * scale_factor;
Size minPlateSize(config->minPlateSizeWidthPx * scale_factor, config->minPlateSizeHeightPx * scale_factor);
Size maxPlateSize(maxWidth, maxHeight);
vector<Rect> allRegions = find_plates(cropped, minPlateSize, maxPlateSize);
// Aggregate the Rect regions into a hierarchical representation
for( unsigned int i = 0; i < allRegions.size(); i++ )
{
allRegions[i].x = (allRegions[i].x / scale_factor);
allRegions[i].y = (allRegions[i].y / scale_factor);
allRegions[i].width = allRegions[i].width / scale_factor;
allRegions[i].height = allRegions[i].height / scale_factor;
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
allRegions[i] = expandRect(allRegions[i], 0, 0, w, h);
allRegions[i].x = allRegions[i].x + offset_x;
allRegions[i].y = allRegions[i].y + offset_y;
}
vector<PlateRegion> orderedRegions = aggregateRegions(allRegions);
for (int j = 0; j < orderedRegions.size(); j++)
detectedRegions.push_back(orderedRegions[j]);
}
return detectedRegions;
}
std::string Detector::get_detector_file() {

View File

@@ -45,9 +45,9 @@ namespace alpr
bool isLoaded();
std::vector<PlateRegion> detect(cv::Mat frame);
virtual std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
//virtual std::vector<cv::Rect> find_plates(cv::Mat frame)=0;
virtual std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size)=0;
void setMask(cv::Mat mask);

View File

@@ -45,77 +45,24 @@ namespace alpr
DetectorCPU::~DetectorCPU() {
}
vector<PlateRegion> DetectorCPU::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest)
{
Mat frame_gray;
if (frame.channels() > 2)
{
cvtColor( frame, frame_gray, CV_BGR2GRAY );
}
else
{
frame.copyTo(frame_gray);
}
// Apply the detection mask if it has been specified by the user
if (detector_mask.mask_loaded)
frame_gray = detector_mask.apply_mask(frame_gray);
vector<PlateRegion> detectedRegions;
for (int i = 0; i < regionsOfInterest.size(); i++)
{
Rect roi = regionsOfInterest[i];
// Adjust the ROI to be inside the detection mask (if it exists)
if (detector_mask.mask_loaded)
roi = detector_mask.getRoiInsideMask(roi);
// Sanity check. If roi width or height is less than minimum possible plate size,
// then skip it
if ((roi.width < config->minPlateSizeWidthPx) ||
(roi.height < config->minPlateSizeHeightPx))
continue;
Mat cropped = frame_gray(roi);
vector<PlateRegion> subRegions = doCascade(cropped, roi.x, roi.y);
for (int j = 0; j < subRegions.size(); j++)
detectedRegions.push_back(subRegions[j]);
}
return detectedRegions;
}
vector<PlateRegion> DetectorCPU::doCascade(Mat frame, int offset_x, int offset_y)
vector<Rect> DetectorCPU::find_plates(Mat frame, cv::Size min_plate_size, cv::Size max_plate_size)
{
int w = frame.size().width;
int h = frame.size().height;
float scale_factor = computeScaleFactor(w, h);
vector<Rect> plates;
equalizeHist( frame, frame );
if (scale_factor != 1.0)
resize(frame, frame, Size(w * scale_factor, h * scale_factor));
//-- Detect plates
timespec startTime;
getTimeMonotonic(&startTime);
float maxWidth = ((float) w) * (config->maxPlateWidthPercent / 100.0f) * scale_factor;
float maxHeight = ((float) h) * (config->maxPlateHeightPercent / 100.0f) * scale_factor;
Size minSize(config->minPlateSizeWidthPx * scale_factor, config->minPlateSizeHeightPx * scale_factor);
Size maxSize(maxWidth, maxHeight);
equalizeHist( frame, frame );
plate_cascade.detectMultiScale( frame, plates, config->detection_iteration_increase, config->detectionStrictness,
CV_HAAR_DO_CANNY_PRUNING,
//0|CV_HAAR_SCALE_IMAGE,
minSize, maxSize );
min_plate_size, max_plate_size );
if (config->debugTiming)
@@ -125,23 +72,7 @@ namespace alpr
cout << "LBP Time: " << diffclock(startTime, endTime) << "ms." << endl;
}
for( unsigned int i = 0; i < plates.size(); i++ )
{
plates[i].x = (plates[i].x / scale_factor);
plates[i].y = (plates[i].y / scale_factor);
plates[i].width = plates[i].width / scale_factor;
plates[i].height = plates[i].height / scale_factor;
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
plates[i] = expandRect(plates[i], 0, 0, w, h);
plates[i].x = plates[i].x + offset_x;
plates[i].y = plates[i].y + offset_y;
}
vector<PlateRegion> orderedRegions = aggregateRegions(plates);
return orderedRegions;
return plates;
}

View File

@@ -39,13 +39,12 @@ namespace alpr
DetectorCPU(Config* config, PreWarp* prewarp);
virtual ~DetectorCPU();
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size);
private:
cv::CascadeClassifier plate_cascade;
std::vector<PlateRegion> doCascade(cv::Mat frame, int offset_x, int offset_y);
};
}

View File

@@ -19,7 +19,6 @@
#include "detectorcuda.h"
#ifdef COMPILE_GPU
using namespace cv;
@@ -49,60 +48,22 @@ namespace alpr
DetectorCUDA::~DetectorCUDA() {
}
vector<PlateRegion> DetectorCUDA::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest)
vector<Rect> DetectorCUDA::find_plates(Mat frame, cv::Size min_plate_size, cv::Size max_plate_size)
{
Mat frame_gray;
if (frame.channels() > 2)
{
cvtColor( frame, frame_gray, CV_BGR2GRAY );
}
else
{
frame.copyTo(frame_gray);
}
vector<PlateRegion> detectedRegions;
for (int i = 0; i < regionsOfInterest.size(); i++)
{
Mat cropped = frame_gray(regionsOfInterest[i]);
vector<PlateRegion> subRegions = doCascade(cropped, regionsOfInterest[i].x, regionsOfInterest[i].y);
for (int j = 0; j < subRegions.size(); j++)
detectedRegions.push_back(subRegions[j]);
}
return detectedRegions;
}
vector<PlateRegion> DetectorCUDA::doCascade(Mat frame, int offset_x, int offset_y)
{
int w = frame.size().width;
int h = frame.size().height;
float scale_factor = computeScaleFactor(w, h);
vector<Rect> plates;
equalizeHist( frame, frame );
if (scale_factor != 1.0)
resize(frame, frame, Size(w * scale_factor, h * scale_factor));
//-- Detect plates
vector<Rect> plates;
timespec startTime;
getTimeMonotonic(&startTime);
float maxWidth = ((float) w) * (config->maxPlateWidthPercent / 100.0f) * scale_factor;
float maxHeight = ((float) h) * (config->maxPlateHeightPercent / 100.0f) * scale_factor;
Size minSize(config->minPlateSizeWidthPx * scale_factor, config->minPlateSizeHeightPx * scale_factor);
gpu::GpuMat cudaFrame, plateregions_buffer;
Mat plateregions_downloaded;
cudaFrame.upload(frame);
int numdetected = cuda_cascade.detectMultiScale(cudaFrame, plateregions_buffer, (double) config->detection_iteration_increase, config->detectionStrictness, minSize);
int numdetected = cuda_cascade.detectMultiScale(cudaFrame, plateregions_buffer,
(double) config->detection_iteration_increase, config->detectionStrictness,
min_plate_size);
plateregions_buffer.colRange(0, numdetected).download(plateregions_downloaded);
for (int i = 0; i < numdetected; ++i)
@@ -110,33 +71,14 @@ namespace alpr
plates.push_back(plateregions_downloaded.ptr<cv::Rect>()[i]);
}
if (config->debugTiming)
{
timespec endTime;
getTimeMonotonic(&endTime);
cout << "LBP Time: " << diffclock(startTime, endTime) << "ms." << endl;
}
for( unsigned int i = 0; i < plates.size(); i++ )
{
plates[i].x = (plates[i].x / scale_factor);
plates[i].y = (plates[i].y / scale_factor);
plates[i].width = plates[i].width / scale_factor;
plates[i].height = plates[i].height / scale_factor;
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
plates[i] = expandRect(plates[i], 0, 0, w, h);
plates[i].x = plates[i].x + offset_x;
plates[i].y = plates[i].y + offset_y;
}
vector<PlateRegion> orderedRegions = aggregateRegions(plates);
return orderedRegions;
return plates;
}
}

View File

@@ -46,13 +46,12 @@ namespace alpr
DetectorCUDA(Config* config, PreWarp* prewarp);
virtual ~DetectorCUDA();
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size);
private:
cv::gpu::CascadeClassifier_GPU cuda_cascade;
std::vector<PlateRegion> doCascade(cv::Mat frame, int offset_x, int offset_y);
};
}

View File

@@ -47,171 +47,160 @@ namespace alpr {
}
vector<PlateRegion> DetectorMorph::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest) {
Mat frame_gray,frame_gray_cp;
if (frame.channels() > 2)
{
cvtColor( frame, frame_gray, CV_BGR2GRAY );
}
else
{
frame.copyTo(frame_gray);
}
std::vector<cv::Rect> DetectorMorph::find_plates(cv::Mat frame_gray, cv::Size min_plate_size, cv::Size max_plate_size)
{
Mat frame_gray_cp(frame_gray.size(), frame_gray.type());
frame_gray.copyTo(frame_gray_cp);
blur(frame_gray, frame_gray, Size(5, 5));
vector<PlateRegion> detectedRegions;
for (int i = 0; i < regionsOfInterest.size(); i++) {
Mat img_open, img_result;
Mat element = getStructuringElement(MORPH_RECT, Size(30, 4));
morphologyEx(frame_gray, img_open, CV_MOP_OPEN, element, cv::Point(-1, -1));
vector<Rect> plates;
Mat img_open, img_result;
Mat element = getStructuringElement(MORPH_RECT, Size(30, 4));
morphologyEx(frame_gray, img_open, CV_MOP_OPEN, element, cv::Point(-1, -1));
img_result = frame_gray - img_open;
img_result = frame_gray - img_open;
if (config->debugDetector && config->debugShowImages) {
imshow("Opening", img_result);
if (config->debugDetector && config->debugShowImages) {
imshow("Opening", img_result);
}
//threshold image using otsu thresholding
Mat img_threshold, img_open2;
threshold(img_result, img_threshold, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
if (config->debugDetector && config->debugShowImages) {
imshow("Threshold Detector", img_threshold);
}
Mat diamond(5, 5, CV_8U, cv::Scalar(1));
diamond.at<uchar>(0, 0) = 0;
diamond.at<uchar>(0, 1) = 0;
diamond.at<uchar>(1, 0) = 0;
diamond.at<uchar>(4, 4) = 0;
diamond.at<uchar>(3, 4) = 0;
diamond.at<uchar>(4, 3) = 0;
diamond.at<uchar>(4, 0) = 0;
diamond.at<uchar>(4, 1) = 0;
diamond.at<uchar>(3, 0) = 0;
diamond.at<uchar>(0, 4) = 0;
diamond.at<uchar>(0, 3) = 0;
diamond.at<uchar>(1, 4) = 0;
morphologyEx(img_threshold, img_open2, CV_MOP_OPEN, diamond, cv::Point(-1, -1));
Mat rectElement = getStructuringElement(cv::MORPH_RECT, Size(13, 4));
morphologyEx(img_open2, img_threshold, CV_MOP_CLOSE, rectElement, cv::Point(-1, -1));
if (config->debugDetector && config->debugShowImages) {
imshow("Close", img_threshold);
waitKey(0);
}
//Find contours of possibles plates
vector< vector< Point> > contours;
findContours(img_threshold,
contours, // a vector of contours
CV_RETR_EXTERNAL, // retrieve the external contours
CV_CHAIN_APPROX_NONE); // all pixels of each contours
//Start to iterate to each contour founded
vector<vector<Point> >::iterator itc = contours.begin();
vector<RotatedRect> rects;
//Remove patch that are no inside limits of aspect ratio and area.
while (itc != contours.end()) {
//Create bounding rect of object
RotatedRect mr = minAreaRect(Mat(*itc));
if (mr.angle < -45.) {
mr.angle += 90.0;
swap(mr.size.width, mr.size.height);
}
if (!CheckSizes(mr))
itc = contours.erase(itc);
else {
++itc;
rects.push_back(mr);
}
}
//Now prunning based on checking all candidate plates for a min/max number of blobsc
Mat img_crop, img_crop_b, img_crop_th, img_crop_th_inv;
vector< vector< Point> > plateBlobs;
vector< vector< Point> > plateBlobsInv;
double thresholds[] = { 10, 40, 80, 120, 160, 200, 240 };
const int num_thresholds = 7;
int numValidChars = 0;
Mat rotated;
for (int i = 0; i < rects.size(); i++) {
numValidChars = 0;
RotatedRect PlateRect = rects[i];
Size rect_size = PlateRect.size;
// get the rotation matrix
Mat M = getRotationMatrix2D(PlateRect.center, PlateRect.angle, 1.0);
// perform the affine transformation
warpAffine(frame_gray_cp, rotated, M, frame_gray_cp.size(), INTER_CUBIC);
//Crop area around candidate plate
getRectSubPix(rotated, rect_size, PlateRect.center, img_crop);
if (config->debugDetector && config->debugShowImages) {
imshow("Tilt Correction", img_crop);
waitKey(0);
}
//threshold image using otsu thresholding
Mat img_threshold, img_open2;
threshold(img_result, img_threshold, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
for (int z = 0; z < num_thresholds; z++) {
if (config->debugDetector && config->debugShowImages) {
imshow("Threshold Detector", img_threshold);
}
cv::threshold(img_crop, img_crop_th, thresholds[z], 255, cv::THRESH_BINARY);
cv::threshold(img_crop, img_crop_th_inv, thresholds[z], 255, cv::THRESH_BINARY_INV);
Mat diamond(5, 5, CV_8U, cv::Scalar(1));
findContours(img_crop_th,
plateBlobs, // a vector of contours
CV_RETR_LIST, // retrieve the contour list
CV_CHAIN_APPROX_NONE); // all pixels of each contours
diamond.at<uchar>(0, 0) = 0;
diamond.at<uchar>(0, 1) = 0;
diamond.at<uchar>(1, 0) = 0;
diamond.at<uchar>(4, 4) = 0;
diamond.at<uchar>(3, 4) = 0;
diamond.at<uchar>(4, 3) = 0;
diamond.at<uchar>(4, 0) = 0;
diamond.at<uchar>(4, 1) = 0;
diamond.at<uchar>(3, 0) = 0;
diamond.at<uchar>(0, 4) = 0;
diamond.at<uchar>(0, 3) = 0;
diamond.at<uchar>(1, 4) = 0;
morphologyEx(img_threshold, img_open2, CV_MOP_OPEN, diamond, cv::Point(-1, -1));
Mat rectElement = getStructuringElement(cv::MORPH_RECT, Size(13, 4));
morphologyEx(img_open2, img_threshold, CV_MOP_CLOSE, rectElement, cv::Point(-1, -1));
findContours(img_crop_th_inv,
plateBlobsInv, // a vector of contours
CV_RETR_LIST, // retrieve the contour list
CV_CHAIN_APPROX_NONE); // all pixels of each contours
if (config->debugDetector && config->debugShowImages) {
imshow("Close", img_threshold);
waitKey(0);
}
int numBlobs = plateBlobs.size();
int numBlobsInv = plateBlobsInv.size();
//Find contours of possibles plates
vector< vector< Point> > contours;
findContours(img_threshold,
contours, // a vector of contours
CV_RETR_EXTERNAL, // retrieve the external contours
CV_CHAIN_APPROX_NONE); // all pixels of each contours
float idealAspect = config->avgCharWidthMM / config->avgCharHeightMM;
for (int j = 0; j < numBlobs; j++) {
cv::Rect r0 = cv::boundingRect(cv::Mat(plateBlobs[j]));
//Start to iterate to each contour founded
vector<vector<Point> >::iterator itc = contours.begin();
vector<RotatedRect> rects;
if (ValidateCharAspect(r0, idealAspect))
numValidChars++;
}
//Remove patch that are no inside limits of aspect ratio and area.
while (itc != contours.end()) {
//Create bounding rect of object
RotatedRect mr = minAreaRect(Mat(*itc));
if (mr.angle < -45.) {
mr.angle += 90.0;
swap(mr.size.width, mr.size.height);
}
if (!CheckSizes(mr))
itc = contours.erase(itc);
else {
++itc;
rects.push_back(mr);
}
}
//Now prunning based on checking all candidate plates for a min/max number of blobsc
Mat img_crop, img_crop_b, img_crop_th, img_crop_th_inv;
vector< vector< Point> > plateBlobs;
vector< vector< Point> > plateBlobsInv;
double thresholds[] = { 10, 40, 80, 120, 160, 200, 240 };
const int num_thresholds = 7;
int numValidChars = 0;
Mat rotated;
for (int i = 0; i < rects.size(); i++) {
numValidChars = 0;
RotatedRect PlateRect = rects[i];
Size rect_size = PlateRect.size;
// get the rotation matrix
Mat M = getRotationMatrix2D(PlateRect.center, PlateRect.angle, 1.0);
// perform the affine transformation
warpAffine(frame_gray_cp, rotated, M, frame_gray_cp.size(), INTER_CUBIC);
//Crop area around candidate plate
getRectSubPix(rotated, rect_size, PlateRect.center, img_crop);
if (config->debugDetector && config->debugShowImages) {
imshow("Tilt Correction", img_crop);
waitKey(0);
}
for (int z = 0; z < num_thresholds; z++) {
cv::threshold(img_crop, img_crop_th, thresholds[z], 255, cv::THRESH_BINARY);
cv::threshold(img_crop, img_crop_th_inv, thresholds[z], 255, cv::THRESH_BINARY_INV);
findContours(img_crop_th,
plateBlobs, // a vector of contours
CV_RETR_LIST, // retrieve the contour list
CV_CHAIN_APPROX_NONE); // all pixels of each contours
findContours(img_crop_th_inv,
plateBlobsInv, // a vector of contours
CV_RETR_LIST, // retrieve the contour list
CV_CHAIN_APPROX_NONE); // all pixels of each contours
int numBlobs = plateBlobs.size();
int numBlobsInv = plateBlobsInv.size();
float idealAspect = config->avgCharWidthMM / config->avgCharHeightMM;
for (int j = 0; j < numBlobs; j++) {
cv::Rect r0 = cv::boundingRect(cv::Mat(plateBlobs[j]));
if (ValidateCharAspect(r0, idealAspect))
numValidChars++;
}
for (int j = 0; j < numBlobsInv; j++) {
cv::Rect r0 = cv::boundingRect(cv::Mat(plateBlobsInv[j]));
if (ValidateCharAspect(r0, idealAspect))
numValidChars++;
}
}
//If too much or too lcittle might not be a true plate
//if (numBlobs < 3 || numBlobs > 50) continue;
if (numValidChars < 4 || numValidChars > 50) continue;
PlateRegion PlateReg;
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
Rect bounding_rect = PlateRect.boundingRect();
PlateReg.rect = expandRect(bounding_rect, 0, 0, frame.cols, frame.rows);
detectedRegions.push_back(PlateReg);
for (int j = 0; j < numBlobsInv; j++) {
cv::Rect r0 = cv::boundingRect(cv::Mat(plateBlobsInv[j]));
if (ValidateCharAspect(r0, idealAspect))
numValidChars++;
}
}
//If too much or too lcittle might not be a true plate
//if (numBlobs < 3 || numBlobs > 50) continue;
if (numValidChars < 4 || numValidChars > 50) continue;
PlateRegion PlateReg;
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
Rect bounding_rect = PlateRect.boundingRect();
Rect rect_expanded = expandRect(bounding_rect, 0, 0, frame_gray.cols, frame_gray.rows);
plates.push_back(rect_expanded);
}
return detectedRegions;
return plates;
}
bool DetectorMorph::CheckSizes(RotatedRect& mr) {

View File

@@ -38,7 +38,7 @@ namespace alpr {
DetectorMorph(Config* config, PreWarp* prewarp);
virtual ~DetectorMorph();
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size);
private:
bool CheckSizes(cv::RotatedRect& mr);

View File

@@ -98,47 +98,10 @@ namespace alpr
DetectorOCL::~DetectorOCL() {
}
vector<PlateRegion> DetectorOCL::detect(Mat frame, std::vector<cv::Rect> regionsOfInterest)
vector<Rect> DetectorOCL::find_plates(Mat orig_frame, cv::Size min_plate_size, cv::Size max_plate_size)
{
Mat frame_gray;
if (frame.channels() > 2)
{
cvtColor( frame, frame_gray, CV_BGR2GRAY );
}
else
{
frame.copyTo(frame_gray);
}
vector<PlateRegion> detectedRegions;
for (int i = 0; i < regionsOfInterest.size(); i++)
{
// Sanity check. If roi width or height is less than minimum possible plate size,
// then skip it
if ((regionsOfInterest[i].width < config->minPlateSizeWidthPx) ||
(regionsOfInterest[i].height < config->minPlateSizeHeightPx))
continue;
Mat cropped = frame_gray(regionsOfInterest[i]);
vector<PlateRegion> subRegions = doCascade(cropped, regionsOfInterest[i].x, regionsOfInterest[i].y);
for (int j = 0; j < subRegions.size(); j++)
detectedRegions.push_back(subRegions[j]);
}
return detectedRegions;
}
vector<PlateRegion> DetectorOCL::doCascade(Mat orig_frame, int offset_x, int offset_y)
{
int w = orig_frame.size().width;
int h = orig_frame.size().height;
float scale_factor = computeScaleFactor(w, h);
vector<Rect> plates;
@@ -146,12 +109,6 @@ namespace alpr
timespec startTime;
getTimeMonotonic(&startTime);
float maxWidth = ((float) w) * (config->maxPlateWidthPercent / 100.0f) * scale_factor;
float maxHeight = ((float) h) * (config->maxPlateHeightPercent / 100.0f) * scale_factor;
Size minSize(config->minPlateSizeWidthPx * scale_factor, config->minPlateSizeHeightPx * scale_factor);
Size maxSize(maxWidth, maxHeight);
// If we have an OpenCL core available, use it. Otherwise use CPU
if (ocl_detector_mutex_m.try_lock())
{
@@ -160,12 +117,9 @@ namespace alpr
equalizeHist( openclFrame, openclFrame );
if (scale_factor != 1.0)
resize(openclFrame, openclFrame, Size(w * scale_factor, h * scale_factor));
plate_cascade.detectMultiScale( openclFrame, plates, config->detection_iteration_increase, config->detectionStrictness,
0,
minSize, maxSize );
min_plate_size, max_plate_size );
ocl_detector_mutex_m.unlock();
}
@@ -173,18 +127,12 @@ namespace alpr
{
equalizeHist( orig_frame, orig_frame );
if (scale_factor != 1.0)
resize(orig_frame, orig_frame, Size(w * scale_factor, h * scale_factor));
plate_cascade.detectMultiScale( orig_frame, plates, config->detection_iteration_increase, config->detectionStrictness,
0,
minSize, maxSize );
min_plate_size, max_plate_size );
}
if (config->debugTiming)
{
timespec endTime;
@@ -192,23 +140,8 @@ namespace alpr
cout << "LBP Time: " << diffclock(startTime, endTime) << "ms." << endl;
}
for( unsigned int i = 0; i < plates.size(); i++ )
{
plates[i].x = (plates[i].x / scale_factor);
plates[i].y = (plates[i].y / scale_factor);
plates[i].width = plates[i].width / scale_factor;
plates[i].height = plates[i].height / scale_factor;
return plates;
// Ensure that the rectangle isn't < 0 or > maxWidth/Height
plates[i] = expandRect(plates[i], 0, 0, w, h);
plates[i].x = plates[i].x + offset_x;
plates[i].y = plates[i].y + offset_y;
}
vector<PlateRegion> orderedRegions = aggregateRegions(plates);
return orderedRegions;
}

View File

@@ -42,13 +42,12 @@ namespace alpr
DetectorOCL(Config* config, PreWarp* prewarp);
virtual ~DetectorOCL();
std::vector<PlateRegion> detect(cv::Mat frame, std::vector<cv::Rect> regionsOfInterest);
std::vector<cv::Rect> find_plates(cv::Mat frame, cv::Size min_plate_size, cv::Size max_plate_size);
private:
cv::CascadeClassifier plate_cascade;
std::vector<PlateRegion> doCascade(cv::Mat frame, int offset_x, int offset_y);
};
}