mirror of
https://github.com/dev6699/yolotriton.git
synced 2025-09-26 19:51:13 +08:00
feat: added support for YOLO-NAS INT8
This commit is contained in:
83
cmd/main.go
83
cmd/main.go
@@ -5,25 +5,30 @@ import (
|
||||
"fmt"
|
||||
"log"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/dev6699/yolotriton"
|
||||
)
|
||||
|
||||
type Flags struct {
|
||||
ModelName string
|
||||
ModelVersion string
|
||||
ModelType string
|
||||
URL string
|
||||
Image string
|
||||
ModelName string
|
||||
ModelVersion string
|
||||
ModelType string
|
||||
URL string
|
||||
Image string
|
||||
Benchmark bool
|
||||
BenchmarkCount int
|
||||
}
|
||||
|
||||
func parseFlags() Flags {
|
||||
var flags Flags
|
||||
flag.StringVar(&flags.ModelName, "m", "yolonas", "Name of model being served (Required)")
|
||||
flag.StringVar(&flags.ModelVersion, "x", "", "Version of model. Default: Latest Version")
|
||||
flag.StringVar(&flags.ModelType, "t", "yolonas", "Type of model. Available options: [yolonas, yolov8]")
|
||||
flag.StringVar(&flags.ModelType, "t", "yolonas", "Type of model. Available options: [yolonas, yolonasint8, yolov8]")
|
||||
flag.StringVar(&flags.URL, "u", "tritonserver:8001", "Inference Server URL.")
|
||||
flag.StringVar(&flags.Image, "i", "images/1.jpg", "Inference Image.")
|
||||
flag.BoolVar(&flags.Benchmark, "b", false, "Run benchmark.")
|
||||
flag.IntVar(&flags.BenchmarkCount, "n", 1, "Number of benchmark run.")
|
||||
flag.Parse()
|
||||
return flags
|
||||
}
|
||||
@@ -38,11 +43,13 @@ func main() {
|
||||
model = yolotriton.NewYoloV8(FLAGS.ModelName, FLAGS.ModelVersion)
|
||||
case yolotriton.ModelTypeYoloNAS:
|
||||
model = yolotriton.NewYoloNAS(FLAGS.ModelName, FLAGS.ModelVersion)
|
||||
case yolotriton.ModelTypeYoloNASInt8:
|
||||
model = yolotriton.NewYoloNASInt8(FLAGS.ModelName, FLAGS.ModelVersion)
|
||||
default:
|
||||
log.Fatalf("Unsupported model: %s. Available options: [yolonas, yolov8]", FLAGS.ModelType)
|
||||
log.Fatalf("Unsupported model: %s. Available options: [yolonas, yolonasint8, yolov8]", FLAGS.ModelType)
|
||||
}
|
||||
|
||||
ygt, err := yolotriton.New(FLAGS.URL, model)
|
||||
yt, err := yolotriton.New(FLAGS.URL, model)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
@@ -52,31 +59,47 @@ func main() {
|
||||
log.Fatalf("Failed to preprocess image: %v", err)
|
||||
}
|
||||
|
||||
results, err := ygt.Infer(img)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
loop := 1
|
||||
if FLAGS.Benchmark {
|
||||
loop = FLAGS.BenchmarkCount
|
||||
}
|
||||
|
||||
for i, r := range results {
|
||||
fmt.Println("prediction: ", i)
|
||||
fmt.Println("class: ", r.Class)
|
||||
fmt.Printf("confidence: %.2f\n", r.Probability)
|
||||
fmt.Println("bboxes: [", int(r.X1), int(r.Y1), int(r.X2), int(r.Y2), "]")
|
||||
fmt.Println("---------------------")
|
||||
start := time.Now()
|
||||
for i := 0; i < loop; i++ {
|
||||
now := time.Now()
|
||||
results, err := yt.Infer(img)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
fmt.Printf("%d. processing time: %s\n", i+1, time.Since(now))
|
||||
if FLAGS.Benchmark {
|
||||
continue
|
||||
}
|
||||
for i, r := range results {
|
||||
fmt.Println("prediction: ", i)
|
||||
fmt.Println("class: ", r.Class)
|
||||
fmt.Printf("confidence: %.2f\n", r.Probability)
|
||||
fmt.Println("bboxes: [", int(r.X1), int(r.Y1), int(r.X2), int(r.Y2), "]")
|
||||
fmt.Println("---------------------")
|
||||
}
|
||||
|
||||
out, err := yolotriton.DrawBoundingBoxes(
|
||||
img,
|
||||
results,
|
||||
int(float64(img.Bounds().Dx())*0.005),
|
||||
float64(img.Bounds().Dx())*0.02,
|
||||
)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
err = yolotriton.SaveImage(out, fmt.Sprintf("%s_%s_out.jpg", strings.Split(FLAGS.Image, ".")[0], FLAGS.ModelName))
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
out, err := yolotriton.DrawBoundingBoxes(
|
||||
img,
|
||||
results,
|
||||
int(float64(img.Bounds().Dx())*0.005),
|
||||
float64(img.Bounds().Dx())*0.02,
|
||||
)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
err = yolotriton.SaveImage(out, fmt.Sprintf("%s_%s_out.jpg", strings.Split(FLAGS.Image, ".")[0], FLAGS.ModelName))
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
if FLAGS.Benchmark {
|
||||
fmt.Println("Avg processing time:", time.Since(start)/time.Duration(FLAGS.BenchmarkCount))
|
||||
}
|
||||
}
|
||||
|
0
model_repository/yolonasint8/1/.gitkeep
Normal file
0
model_repository/yolonasint8/1/.gitkeep
Normal file
2
model_repository/yolonasint8/config.pbtxt
Normal file
2
model_repository/yolonasint8/config.pbtxt
Normal file
@@ -0,0 +1,2 @@
|
||||
name: "yolonasint8"
|
||||
platform: "tensorrt_plan"
|
@@ -30,6 +30,29 @@ func bytesToFloat32Slice(data []byte) ([]float32, error) {
|
||||
return t, nil
|
||||
}
|
||||
|
||||
func bytesToInt32Slice(data []byte) ([]int32, error) {
|
||||
t := []int32{}
|
||||
|
||||
// Create a buffer from the input data
|
||||
buffer := bytes.NewReader(data)
|
||||
for {
|
||||
// Read the binary data from the buffer
|
||||
var binaryValue uint32
|
||||
err := binary.Read(buffer, binary.LittleEndian, &binaryValue)
|
||||
if err != nil {
|
||||
if err == io.EOF {
|
||||
break
|
||||
}
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t = append(t, int32(binaryValue))
|
||||
|
||||
}
|
||||
|
||||
return t, nil
|
||||
}
|
||||
|
||||
type Box struct {
|
||||
X1 float64
|
||||
Y1 float64
|
||||
|
@@ -3,6 +3,8 @@ package yolotriton
|
||||
import (
|
||||
"image"
|
||||
"image/color"
|
||||
"image/draw"
|
||||
"math"
|
||||
|
||||
"github.com/nfnt/resize"
|
||||
)
|
||||
@@ -43,3 +45,51 @@ func imageToFloat32Slice(img image.Image) []float32 {
|
||||
|
||||
return inputContents
|
||||
}
|
||||
|
||||
func imageToUint32Slice(img image.Image) []uint32 {
|
||||
bounds := img.Bounds()
|
||||
width, height := bounds.Max.X, bounds.Max.Y
|
||||
|
||||
inputContents := make([]uint32, width*height*3)
|
||||
|
||||
idx := 0
|
||||
offset := (height * width)
|
||||
for y := 0; y < height; y++ {
|
||||
for x := 0; x < width; x++ {
|
||||
pixel := img.At(x, y)
|
||||
r, g, b, _ := pixelRGBA(pixel)
|
||||
|
||||
inputContents[idx] = r
|
||||
inputContents[offset+idx] = g
|
||||
inputContents[2*offset+idx] = b
|
||||
idx++
|
||||
}
|
||||
}
|
||||
|
||||
return inputContents
|
||||
}
|
||||
|
||||
func padImageToCenterWithGray(originalImage image.Image, targetWidth, targetHeight int, grayValue uint8) (image.Image, int, int) {
|
||||
// Calculate the dimensions of the original image
|
||||
originalWidth := originalImage.Bounds().Dx()
|
||||
originalHeight := originalImage.Bounds().Dy()
|
||||
|
||||
// Calculate the padding dimensions
|
||||
padWidth := targetWidth - originalWidth
|
||||
padHeight := targetHeight - originalHeight
|
||||
|
||||
// Create a new RGBA image with the desired dimensions and fill it with gray
|
||||
paddedImage := image.NewRGBA(image.Rect(0, 0, targetWidth, targetHeight))
|
||||
grayColor := color.RGBA{grayValue, grayValue, grayValue, 255}
|
||||
draw.Draw(paddedImage, paddedImage.Bounds(), &image.Uniform{grayColor}, image.Point{}, draw.Src)
|
||||
|
||||
// Calculate the position to paste the original image in the center
|
||||
xOffset := int(math.Floor(float64(padWidth) / 2))
|
||||
yOffset := int(math.Floor(float64(padHeight) / 2))
|
||||
|
||||
// Paste the original image onto the padded image
|
||||
pasteRect := image.Rect(xOffset, yOffset, xOffset+originalWidth, yOffset+originalHeight)
|
||||
draw.Draw(paddedImage, pasteRect, originalImage, image.Point{}, draw.Over)
|
||||
|
||||
return paddedImage, xOffset, yOffset
|
||||
}
|
||||
|
138
yolo.go
138
yolo.go
@@ -13,19 +13,20 @@ import (
|
||||
type ModelType string
|
||||
|
||||
const (
|
||||
ModelTypeYoloV8 ModelType = "yolov8"
|
||||
ModelTypeYoloNAS ModelType = "yolonas"
|
||||
ModelTypeYoloV8 ModelType = "yolov8"
|
||||
ModelTypeYoloNAS ModelType = "yolonas"
|
||||
ModelTypeYoloNASInt8 ModelType = "yolonasint8"
|
||||
)
|
||||
|
||||
type Model interface {
|
||||
GetConfig() YoloTritonConfig
|
||||
PreProcess(img image.Image, targetWidth uint, targetHeight uint) ([]float32, error)
|
||||
PreProcess(img image.Image, targetWidth uint, targetHeight uint) (*triton.InferTensorContents, error)
|
||||
PostProcess(rawOutputContents [][]byte) ([]Box, error)
|
||||
GetClass(index int) string
|
||||
}
|
||||
|
||||
type YoloTritonConfig struct {
|
||||
BatchSize int
|
||||
NumChannels int
|
||||
NumClasses int
|
||||
NumObjects int
|
||||
ModelName string
|
||||
ModelVersion string
|
||||
@@ -39,17 +40,25 @@ func New(url string, model Model) (*YoloTriton, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
cfg := model.GetConfig()
|
||||
modelMetadata, err := newModelMetadata(conn, cfg.ModelName, cfg.ModelVersion)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &YoloTriton{
|
||||
conn: conn,
|
||||
model: model,
|
||||
cfg: model.GetConfig(),
|
||||
conn: conn,
|
||||
model: model,
|
||||
cfg: cfg,
|
||||
modelMetadata: modelMetadata,
|
||||
}, nil
|
||||
}
|
||||
|
||||
type YoloTriton struct {
|
||||
cfg YoloTritonConfig
|
||||
conn *grpc.ClientConn
|
||||
model Model
|
||||
model Model
|
||||
cfg YoloTritonConfig
|
||||
conn *grpc.ClientConn
|
||||
modelMetadata *modelMetadata
|
||||
}
|
||||
|
||||
func (y *YoloTriton) Close() error {
|
||||
@@ -58,51 +67,14 @@ func (y *YoloTriton) Close() error {
|
||||
|
||||
func (y *YoloTriton) Infer(img image.Image) ([]Box, error) {
|
||||
|
||||
inputs, err := y.model.PreProcess(img, y.modelMetadata.inputWidth(), y.modelMetadata.inputHeight())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
modelInferRequest := y.modelMetadata.formInferRequest(inputs)
|
||||
|
||||
client := triton.NewGRPCInferenceServiceClient(y.conn)
|
||||
|
||||
metaResponse, err := ModelMetadataRequest(client, y.cfg.ModelName, y.cfg.ModelVersion)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
modelInferRequest := &triton.ModelInferRequest{
|
||||
ModelName: y.cfg.ModelName,
|
||||
ModelVersion: y.cfg.ModelVersion,
|
||||
}
|
||||
|
||||
input := metaResponse.Inputs[0]
|
||||
if input.Shape[0] == -1 {
|
||||
input.Shape[0] = 1
|
||||
}
|
||||
|
||||
inputWidth := input.Shape[2]
|
||||
inputHeight := input.Shape[3]
|
||||
|
||||
fp32Contents, err := y.model.PreProcess(img, uint(inputWidth), uint(inputHeight))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
modelInferRequest.Inputs = append(modelInferRequest.Inputs,
|
||||
&triton.ModelInferRequest_InferInputTensor{
|
||||
Name: input.Name,
|
||||
Datatype: input.Datatype,
|
||||
Shape: input.Shape,
|
||||
Contents: &triton.InferTensorContents{
|
||||
// Simply assume all are fp32
|
||||
Fp32Contents: fp32Contents,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
for _, o := range metaResponse.Outputs {
|
||||
modelInferRequest.Outputs = append(modelInferRequest.Outputs,
|
||||
&triton.ModelInferRequest_InferRequestedOutputTensor{
|
||||
Name: o.Name,
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
inferResponse, err := ModelInferRequest(client, modelInferRequest)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -131,3 +103,59 @@ func (y *YoloTriton) Infer(img image.Image) ([]Box, error) {
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
type modelMetadata struct {
|
||||
modelName string
|
||||
modelVersion string
|
||||
*triton.ModelMetadataResponse
|
||||
}
|
||||
|
||||
func newModelMetadata(conn *grpc.ClientConn, modelName string, modelVersion string) (*modelMetadata, error) {
|
||||
client := triton.NewGRPCInferenceServiceClient(conn)
|
||||
metaResponse, err := ModelMetadataRequest(client, modelName, modelVersion)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &modelMetadata{
|
||||
modelName: modelName,
|
||||
modelVersion: modelVersion,
|
||||
ModelMetadataResponse: metaResponse,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (m *modelMetadata) inputWidth() uint {
|
||||
return uint(m.Inputs[0].Shape[2])
|
||||
}
|
||||
|
||||
func (m *modelMetadata) inputHeight() uint {
|
||||
return uint(m.Inputs[0].Shape[3])
|
||||
}
|
||||
|
||||
func (m *modelMetadata) formInferRequest(contents *triton.InferTensorContents) *triton.ModelInferRequest {
|
||||
input := m.Inputs[0]
|
||||
if input.Shape[0] == -1 {
|
||||
input.Shape[0] = 1
|
||||
}
|
||||
|
||||
outputs := make([]*triton.ModelInferRequest_InferRequestedOutputTensor, len(m.Outputs))
|
||||
for i, o := range m.Outputs {
|
||||
outputs[i] = &triton.ModelInferRequest_InferRequestedOutputTensor{
|
||||
Name: o.Name,
|
||||
}
|
||||
}
|
||||
|
||||
return &triton.ModelInferRequest{
|
||||
ModelName: m.modelName,
|
||||
ModelVersion: m.modelVersion,
|
||||
Inputs: []*triton.ModelInferRequest_InferInputTensor{
|
||||
{
|
||||
Name: input.Name,
|
||||
Datatype: input.Datatype,
|
||||
Shape: input.Shape,
|
||||
Contents: contents,
|
||||
},
|
||||
},
|
||||
Outputs: outputs,
|
||||
}
|
||||
}
|
||||
|
67
yolonas.go
67
yolonas.go
@@ -2,9 +2,9 @@ package yolotriton
|
||||
|
||||
import (
|
||||
"image"
|
||||
"image/color"
|
||||
"image/draw"
|
||||
"math"
|
||||
|
||||
triton "github.com/dev6699/yolotriton/grpc-client"
|
||||
)
|
||||
|
||||
type YoloNAS struct {
|
||||
@@ -19,8 +19,7 @@ type YoloNAS struct {
|
||||
func NewYoloNAS(modelName string, modelVersion string) Model {
|
||||
return &YoloNAS{
|
||||
YoloTritonConfig: YoloTritonConfig{
|
||||
BatchSize: 1,
|
||||
NumChannels: 80,
|
||||
NumClasses: 80,
|
||||
NumObjects: 8400,
|
||||
MinProbability: 0.5,
|
||||
MaxIOU: 0.7,
|
||||
@@ -36,7 +35,11 @@ func (y *YoloNAS) GetConfig() YoloTritonConfig {
|
||||
return y.YoloTritonConfig
|
||||
}
|
||||
|
||||
func (y *YoloNAS) PreProcess(img image.Image, targetWidth uint, targetHeight uint) ([]float32, error) {
|
||||
func (y *YoloNAS) GetClass(index int) string {
|
||||
return yoloClasses[index]
|
||||
}
|
||||
|
||||
func (y *YoloNAS) PreProcess(img image.Image, targetWidth uint, targetHeight uint) (*triton.InferTensorContents, error) {
|
||||
height := img.Bounds().Dy()
|
||||
width := img.Bounds().Dx()
|
||||
|
||||
@@ -56,7 +59,10 @@ func (y *YoloNAS) PreProcess(img image.Image, targetWidth uint, targetHeight uin
|
||||
y.metadata.yOffset = float32(yOffset)
|
||||
y.metadata.scaleFactor = float32(scaleFactor)
|
||||
|
||||
return fp32Contents, nil
|
||||
contents := &triton.InferTensorContents{
|
||||
Fp32Contents: fp32Contents,
|
||||
}
|
||||
return contents, nil
|
||||
}
|
||||
|
||||
func (y *YoloNAS) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
||||
@@ -76,8 +82,8 @@ func (y *YoloNAS) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
||||
classID := 0
|
||||
prob := float32(0.0)
|
||||
|
||||
for col := 0; col < y.NumChannels; col++ {
|
||||
p := predScores[index*y.NumChannels+(col)]
|
||||
for col := 0; col < y.NumClasses; col++ {
|
||||
p := predScores[index*y.NumClasses+(col)]
|
||||
if p > prob {
|
||||
prob = p
|
||||
classID = col
|
||||
@@ -88,18 +94,18 @@ func (y *YoloNAS) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
||||
continue
|
||||
}
|
||||
|
||||
label := yoloClasses[classID]
|
||||
i := (index * 4)
|
||||
xc := predBoxes[i]
|
||||
yc := predBoxes[i+1]
|
||||
w := predBoxes[i+2]
|
||||
h := predBoxes[i+3]
|
||||
label := y.GetClass(classID)
|
||||
idx := (index * 4)
|
||||
x1raw := predBoxes[idx]
|
||||
y1raw := predBoxes[idx+1]
|
||||
x2raw := predBoxes[idx+2]
|
||||
y2raw := predBoxes[idx+3]
|
||||
|
||||
scale := y.metadata.scaleFactor
|
||||
x1 := (xc - y.metadata.xOffset) / scale
|
||||
y1 := (yc - y.metadata.yOffset) / scale
|
||||
x2 := (w - y.metadata.xOffset) / scale
|
||||
y2 := (h - y.metadata.yOffset) / scale
|
||||
x1 := (x1raw - y.metadata.xOffset) / scale
|
||||
y1 := (y1raw - y.metadata.yOffset) / scale
|
||||
x2 := (x2raw - y.metadata.xOffset) / scale
|
||||
y2 := (y2raw - y.metadata.yOffset) / scale
|
||||
|
||||
boxes = append(boxes, Box{
|
||||
X1: float64(x1),
|
||||
@@ -113,28 +119,3 @@ func (y *YoloNAS) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
||||
|
||||
return boxes, nil
|
||||
}
|
||||
|
||||
func padImageToCenterWithGray(originalImage image.Image, targetWidth, targetHeight int, grayValue uint8) (image.Image, int, int) {
|
||||
// Calculate the dimensions of the original image
|
||||
originalWidth := originalImage.Bounds().Dx()
|
||||
originalHeight := originalImage.Bounds().Dy()
|
||||
|
||||
// Calculate the padding dimensions
|
||||
padWidth := targetWidth - originalWidth
|
||||
padHeight := targetHeight - originalHeight
|
||||
|
||||
// Create a new RGBA image with the desired dimensions and fill it with gray
|
||||
paddedImage := image.NewRGBA(image.Rect(0, 0, targetWidth, targetHeight))
|
||||
grayColor := color.RGBA{grayValue, grayValue, grayValue, 255}
|
||||
draw.Draw(paddedImage, paddedImage.Bounds(), &image.Uniform{grayColor}, image.Point{}, draw.Src)
|
||||
|
||||
// Calculate the position to paste the original image in the center
|
||||
xOffset := int(math.Floor(float64(padWidth) / 2))
|
||||
yOffset := int(math.Floor(float64(padHeight) / 2))
|
||||
|
||||
// Paste the original image onto the padded image
|
||||
pasteRect := image.Rect(xOffset, yOffset, xOffset+originalWidth, yOffset+originalHeight)
|
||||
draw.Draw(paddedImage, pasteRect, originalImage, image.Point{}, draw.Over)
|
||||
|
||||
return paddedImage, xOffset, yOffset
|
||||
}
|
||||
|
116
yolonasint8.go
Normal file
116
yolonasint8.go
Normal file
@@ -0,0 +1,116 @@
|
||||
package yolotriton
|
||||
|
||||
import (
|
||||
"image"
|
||||
"math"
|
||||
|
||||
triton "github.com/dev6699/yolotriton/grpc-client"
|
||||
)
|
||||
|
||||
type YoloNASInt8 struct {
|
||||
YoloTritonConfig
|
||||
metadata struct {
|
||||
xOffset float32
|
||||
yOffset float32
|
||||
scaleFactor float32
|
||||
}
|
||||
}
|
||||
|
||||
func NewYoloNASInt8(modelName string, modelVersion string) Model {
|
||||
return &YoloNASInt8{
|
||||
YoloTritonConfig: YoloTritonConfig{
|
||||
MinProbability: 0.5,
|
||||
MaxIOU: 0.7,
|
||||
ModelName: modelName,
|
||||
ModelVersion: modelVersion,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
var _ Model = &YoloNAS{}
|
||||
|
||||
func (y *YoloNASInt8) GetConfig() YoloTritonConfig {
|
||||
return y.YoloTritonConfig
|
||||
}
|
||||
|
||||
func (y *YoloNASInt8) GetClass(index int) string {
|
||||
return yoloClasses[index]
|
||||
}
|
||||
|
||||
func (y *YoloNASInt8) PreProcess(img image.Image, targetWidth uint, targetHeight uint) (*triton.InferTensorContents, error) {
|
||||
height := img.Bounds().Dy()
|
||||
width := img.Bounds().Dx()
|
||||
|
||||
scaleFactor := math.Min(float64(636)/float64(height), float64(636)/float64(width))
|
||||
if scaleFactor != 1.0 {
|
||||
newHeight := uint(math.Round(float64(height) * scaleFactor))
|
||||
newWidth := uint(math.Round(float64(width) * scaleFactor))
|
||||
img = resizeImage(img, newWidth, newHeight)
|
||||
}
|
||||
|
||||
paddedImage, xOffset, yOffset := padImageToCenterWithGray(img, int(targetWidth), int(targetHeight), 114)
|
||||
uint32Contents := imageToUint32Slice(paddedImage)
|
||||
|
||||
y.metadata.xOffset = float32(xOffset)
|
||||
y.metadata.yOffset = float32(yOffset)
|
||||
y.metadata.scaleFactor = float32(scaleFactor)
|
||||
|
||||
contents := &triton.InferTensorContents{
|
||||
UintContents: uint32Contents,
|
||||
}
|
||||
return contents, nil
|
||||
}
|
||||
|
||||
func (y *YoloNASInt8) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
||||
numPreds, err := bytesToInt32Slice(rawOutputContents[0])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
predBoxes, err := bytesToFloat32Slice(rawOutputContents[1])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
predScores, err := bytesToFloat32Slice(rawOutputContents[2])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
predClasses, err := bytesToInt32Slice(rawOutputContents[3])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
boxes := []Box{}
|
||||
detectedObjects := int(numPreds[0])
|
||||
for index := 0; index < detectedObjects; index++ {
|
||||
|
||||
prob := predScores[index]
|
||||
if prob < y.MinProbability {
|
||||
continue
|
||||
}
|
||||
|
||||
classID := predClasses[index]
|
||||
label := y.GetClass(int(classID))
|
||||
idx := (index * 4)
|
||||
x1raw := predBoxes[idx]
|
||||
y1raw := predBoxes[idx+1]
|
||||
x2raw := predBoxes[idx+2]
|
||||
y2raw := predBoxes[idx+3]
|
||||
|
||||
scale := y.metadata.scaleFactor
|
||||
x1 := (x1raw - y.metadata.xOffset) / scale
|
||||
y1 := (y1raw - y.metadata.yOffset) / scale
|
||||
x2 := (x2raw - y.metadata.xOffset) / scale
|
||||
y2 := (y2raw - y.metadata.yOffset) / scale
|
||||
|
||||
boxes = append(boxes, Box{
|
||||
X1: float64(x1),
|
||||
Y1: float64(y1),
|
||||
X2: float64(x2),
|
||||
Y2: float64(y2),
|
||||
Probability: float64(prob),
|
||||
Class: label,
|
||||
})
|
||||
}
|
||||
|
||||
return boxes, nil
|
||||
}
|
34
yolov8.go
34
yolov8.go
@@ -2,6 +2,8 @@ package yolotriton
|
||||
|
||||
import (
|
||||
"image"
|
||||
|
||||
triton "github.com/dev6699/yolotriton/grpc-client"
|
||||
)
|
||||
|
||||
type YoloV8 struct {
|
||||
@@ -15,8 +17,7 @@ type YoloV8 struct {
|
||||
func NewYoloV8(modelName string, modelVersion string) Model {
|
||||
return &YoloV8{
|
||||
YoloTritonConfig: YoloTritonConfig{
|
||||
BatchSize: 1,
|
||||
NumChannels: 84,
|
||||
NumClasses: 80,
|
||||
NumObjects: 8400,
|
||||
MinProbability: 0.5,
|
||||
MaxIOU: 0.7,
|
||||
@@ -32,7 +33,11 @@ func (y *YoloV8) GetConfig() YoloTritonConfig {
|
||||
return y.YoloTritonConfig
|
||||
}
|
||||
|
||||
func (y *YoloV8) PreProcess(img image.Image, targetWidth uint, targetHeight uint) ([]float32, error) {
|
||||
func (y *YoloV8) GetClass(index int) string {
|
||||
return yoloClasses[index]
|
||||
}
|
||||
|
||||
func (y *YoloV8) PreProcess(img image.Image, targetWidth uint, targetHeight uint) (*triton.InferTensorContents, error) {
|
||||
width := img.Bounds().Dx()
|
||||
height := img.Bounds().Dy()
|
||||
|
||||
@@ -43,7 +48,10 @@ func (y *YoloV8) PreProcess(img image.Image, targetWidth uint, targetHeight uint
|
||||
y.metadata.scaleFactorW = float32(width) / float32(targetWidth)
|
||||
y.metadata.scaleFactorH = float32(height) / float32(targetHeight)
|
||||
|
||||
return fp32Contents, nil
|
||||
contents := &triton.InferTensorContents{
|
||||
Fp32Contents: fp32Contents,
|
||||
}
|
||||
return contents, nil
|
||||
}
|
||||
|
||||
func (y *YoloV8) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
||||
@@ -53,7 +61,7 @@ func (y *YoloV8) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
||||
}
|
||||
|
||||
numObjects := y.NumObjects
|
||||
numChannels := y.NumChannels
|
||||
numClasses := y.NumClasses
|
||||
|
||||
boxes := []Box{}
|
||||
|
||||
@@ -61,7 +69,7 @@ func (y *YoloV8) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
||||
classID := 0
|
||||
prob := float32(0.0)
|
||||
|
||||
for col := 0; col < numChannels-4; col++ {
|
||||
for col := 0; col < numClasses; col++ {
|
||||
p := output[numObjects*(col+4)+index]
|
||||
if p > prob {
|
||||
prob = p
|
||||
@@ -73,16 +81,16 @@ func (y *YoloV8) PostProcess(rawOutputContents [][]byte) ([]Box, error) {
|
||||
continue
|
||||
}
|
||||
|
||||
label := yoloClasses[classID]
|
||||
xc := output[index]
|
||||
yc := output[numObjects+index]
|
||||
label := y.GetClass(classID)
|
||||
x1raw := output[index]
|
||||
y1raw := output[numObjects+index]
|
||||
w := output[2*numObjects+index]
|
||||
h := output[3*numObjects+index]
|
||||
|
||||
x1 := (xc - w/2) * y.metadata.scaleFactorW
|
||||
y1 := (yc - h/2) * y.metadata.scaleFactorH
|
||||
x2 := (xc + w/2) * y.metadata.scaleFactorW
|
||||
y2 := (yc + h/2) * y.metadata.scaleFactorH
|
||||
x1 := (x1raw - w/2) * y.metadata.scaleFactorW
|
||||
y1 := (y1raw - h/2) * y.metadata.scaleFactorH
|
||||
x2 := (x1raw + w/2) * y.metadata.scaleFactorW
|
||||
y2 := (y1raw + h/2) * y.metadata.scaleFactorH
|
||||
|
||||
boxes = append(boxes, Box{
|
||||
X1: float64(x1),
|
||||
|
Reference in New Issue
Block a user