AI: Add TensorFlow model shape detection #127 #5164

* AI: Added support for non BHWC models

Tensorflow models use BHWC by default, however, if we are using
converted models, we can find that the expected input is BCHW. Now the
input is configurable (although the restriction of being dimesion 4 is
still there) via Shape parameter on the input definition. Also, the
model instrospection will try to deduce the input shape from the model
signature.

* AI: Added more tests for enum parsing

ShapeComponent was missing from the tests

* AI: Modified external tests to the new url

The path has been moved from tensorflow/vision to tensorflow/models

* AI: Moved the builder to the model to reuse it

It should reduce the amount of allocations done

* AI: fixed errors after merge

Mainly incorrect paths and duplicated variables
This commit is contained in:
raystlin
2025-08-16 15:55:59 +02:00
committed by GitHub
parent 2a7351ee9a
commit 519a6ab34a
15 changed files with 502 additions and 157 deletions

View File

@@ -30,6 +30,7 @@ type Model struct {
labels []string
disabled bool
meta *tensorflow.ModelInfo
builder *tensorflow.ImageTensorBuilder
mutex sync.Mutex
}
@@ -59,6 +60,7 @@ func NewNasnet(modelsPath string, disabled bool) *Model {
Width: 224,
ResizeOperation: tensorflow.CenterCrop,
ColorChannelOrder: tensorflow.RGB,
Shape: tensorflow.DefaultPhotoInputShape(),
Intervals: []tensorflow.Interval{
{
Start: -1,
@@ -176,7 +178,10 @@ func (m *Model) loadLabels(modelPath string) (err error) {
log.Infof("vision: model does not seem to have tags at %s, trying %s", clean.Log(modelPath), clean.Log(m.defaultLabelsPath))
m.labels, err = tensorflow.LoadLabels(m.defaultLabelsPath, numLabels)
}
return err
if err != nil {
return fmt.Errorf("classify: could not load tags: %v", err)
}
return nil
}
// ModelLoaded tests if the TensorFlow model is loaded.
@@ -197,7 +202,7 @@ func (m *Model) loadModel() (err error) {
modelPath := path.Join(m.modelsPath, m.name)
if len(m.meta.Tags) == 0 {
infos, modelErr := tensorflow.GetModelInfo(modelPath)
infos, modelErr := tensorflow.GetModelTagsInfo(modelPath)
if modelErr != nil {
log.Errorf("classify: could not get info from model in %s (%s)", clean.Log(modelPath), clean.Error(modelErr))
} else if len(infos) == 1 {
@@ -209,9 +214,8 @@ func (m *Model) loadModel() (err error) {
}
m.model, err = tensorflow.SavedModel(modelPath, m.meta.Tags)
if err != nil {
return err
return fmt.Errorf("classify: %s. Path: %s", clean.Error(err), modelPath)
}
if !m.meta.IsComplete() {
@@ -237,6 +241,11 @@ func (m *Model) loadModel() (err error) {
}
}
m.builder, err = tensorflow.NewImageTensorBuilder(m.meta.Input)
if err != nil {
return fmt.Errorf("classify: could not create the tensor builder (%s)", clean.Error(err))
}
return m.loadLabels(modelPath)
}
@@ -310,5 +319,5 @@ func (m *Model) createTensor(image []byte) (*tf.Tensor, error) {
}
}
return tensorflow.Image(img, m.meta.Input)
return tensorflow.Image(img, m.meta.Input, m.builder)
}

View File

@@ -22,9 +22,9 @@ const (
ExternalModelsTestLabel = "PHOTOPRISM_TEST_EXTERNAL_MODELS"
)
var baseUrl = "https://dl.photoprism.app/tensorflow/vision"
var baseUrl = "https://dl.photoprism.app/tensorflow/models"
//To avoid downloading everything again and again...
// To avoid downloading everything again and again...
//var baseUrl = "http://host.docker.internal:8000"
type ModelTestCase struct {
@@ -100,6 +100,15 @@ var modelsInfo = map[string]*ModelTestCase{
},
},
},
/* Not correctly uploaded
"vit-base-patch16-google-250811.tar.gz": {
Info: &tensorflow.ModelInfo{
Output: &tensorflow.ModelOutput{
OutputsLogits: true,
},
},
},
*/
}
func isSafePath(target, baseDir string) bool {

View File

@@ -320,3 +320,44 @@ func TestModel_BestLabels(t *testing.T) {
assert.Empty(t, result)
})
}
func BenchmarkModel_BestLabelWithOptimization(b *testing.B) {
model := NewNasnet(assetsPath, false)
err := model.loadModel()
if err != nil {
b.Fatal(err)
}
imageBuffer, err := os.ReadFile(examplesPath + "/dog_orange.jpg")
if err != nil {
b.Fatal(err)
}
for b.Loop() {
_, err := model.Run(imageBuffer, 10)
if err != nil {
b.Fatal(err)
}
}
}
func BenchmarkModel_BestLabelsNoOptimization(b *testing.B) {
model := NewNasnet(assetsPath, false)
err := model.loadModel()
if err != nil {
b.Fatal(err)
}
model.builder = nil
imageBuffer, err := os.ReadFile(examplesPath + "/dog_orange.jpg")
if err != nil {
b.Fatal(err)
}
for b.Loop() {
_, err := model.Run(imageBuffer, 10)
if err != nil {
b.Fatal(err)
}
}
}

View File

@@ -132,7 +132,7 @@ func (m *Model) loadModel() error {
log.Infof("nsfw: loading %s", clean.Log(filepath.Base(m.modelPath)))
if len(m.meta.Tags) == 0 {
infos, err := tensorflow.GetModelInfo(m.modelPath)
infos, err := tensorflow.GetModelTagsInfo(m.modelPath)
if err != nil {
log.Errorf("nsfw: could not get the model info at %s: %v", clean.Log(m.modelPath))
} else if len(infos) == 1 {
@@ -150,10 +150,10 @@ func (m *Model) loadModel() error {
}
if !m.meta.IsComplete() {
input, output, err := tensorflow.GetInputAndOutputFromSavedModel(m.model)
input, output, err := tensorflow.GetInputAndOutputFromSavedModel(model)
if err != nil {
log.Errorf("nsfw: could not get info from signatures: %v", err)
input, output, err = tensorflow.GuessInputAndOutput(m.model)
input, output, err = tensorflow.GuessInputAndOutput(model)
if err != nil {
return fmt.Errorf("nsfw: %w", err)
}

View File

@@ -24,7 +24,7 @@ func ImageFromFile(fileName string, input *PhotoInput) (*tf.Tensor, error) {
if img, err := OpenImage(fileName); err != nil {
return nil, err
} else {
return Image(img, input)
return Image(img, input, nil)
}
}
@@ -39,17 +39,17 @@ func OpenImage(fileName string) (image.Image, error) {
return img, err
}
func ImageFromBytes(b []byte, input *PhotoInput) (*tf.Tensor, error) {
func ImageFromBytes(b []byte, input *PhotoInput, builder *ImageTensorBuilder) (*tf.Tensor, error) {
img, _, imgErr := image.Decode(bytes.NewReader(b))
if imgErr != nil {
return nil, imgErr
}
return Image(img, input)
return Image(img, input, builder)
}
func Image(img image.Image, input *PhotoInput) (tfTensor *tf.Tensor, err error) {
func Image(img image.Image, input *PhotoInput, builder *ImageTensorBuilder) (tfTensor *tf.Tensor, err error) {
defer func() {
if r := recover(); r != nil {
err = fmt.Errorf("tensorflow: %s (panic)\nstack: %s", r, debug.Stack())
@@ -57,14 +57,14 @@ func Image(img image.Image, input *PhotoInput) (tfTensor *tf.Tensor, err error)
}()
if input.Resolution() <= 0 {
return tfTensor, fmt.Errorf("tensorflow: resolution must be larger 0")
return tfTensor, fmt.Errorf("tensorflow: resolution must be larger than 0")
}
var tfImage [1][][][3]float32
rIndex, gIndex, bIndex := input.ColorChannelOrder.Indices()
for j := 0; j < input.Resolution(); j++ {
tfImage[0] = append(tfImage[0], make([][3]float32, input.Resolution()))
if builder == nil {
builder, err = NewImageTensorBuilder(input)
if err != nil {
return nil, err
}
}
for i := 0; i < input.Resolution(); i++ {
@@ -72,13 +72,14 @@ func Image(img image.Image, input *PhotoInput) (tfTensor *tf.Tensor, err error)
r, g, b, _ := img.At(i, j).RGBA()
//Although RGB can be disordered, we assume the input intervals are
//given in RGB order.
tfImage[0][j][i][rIndex] = convertValue(r, input.GetInterval(0))
tfImage[0][j][i][gIndex] = convertValue(g, input.GetInterval(1))
tfImage[0][j][i][bIndex] = convertValue(b, input.GetInterval(2))
builder.Set(i, j,
convertValue(r, input.GetInterval(0)),
convertValue(g, input.GetInterval(1)),
convertValue(b, input.GetInterval(2)))
}
}
return tf.NewTensor(tfImage)
return builder.BuildTensor()
}
// ImageTransform transforms the given image into a *tf.Tensor and returns it.

View File

@@ -7,16 +7,14 @@ import (
"github.com/stretchr/testify/assert"
"github.com/wamuir/graft/tensorflow"
"github.com/photoprism/photoprism/pkg/fs"
)
var defaultImageInput = &PhotoInput{
Height: 224,
Width: 224,
Shape: DefaultPhotoInputShape(),
}
var assetsPath = fs.Abs("../../../assets")
var examplesPath = filepath.Join(assetsPath, "examples")
func TestConvertValue(t *testing.T) {
@@ -40,7 +38,11 @@ func TestImageFromBytes(t *testing.T) {
t.Fatal(err)
}
result, err := ImageFromBytes(imageBuffer, defaultImageInput)
result, err := ImageFromBytes(imageBuffer, defaultImageInput, nil)
if err != nil {
t.Fatal(err)
}
assert.Equal(t, tensorflow.DataType(0x1), result.DataType())
assert.Equal(t, int64(1), result.Shape()[0])
assert.Equal(t, int64(224), result.Shape()[2])
@@ -48,7 +50,7 @@ func TestImageFromBytes(t *testing.T) {
t.Run("Document", func(t *testing.T) {
imageBuffer, err := os.ReadFile(examplesPath + "/Random.docx")
assert.Nil(t, err)
result, err := ImageFromBytes(imageBuffer, defaultImageInput)
result, err := ImageFromBytes(imageBuffer, defaultImageInput, nil)
assert.Empty(t, result)
assert.EqualError(t, err, "image: unknown format")

View File

@@ -5,8 +5,6 @@ import (
"fmt"
"os"
"path/filepath"
"strconv"
"strings"
pb "github.com/wamuir/graft/tensorflow/core/protobuf/for_core_protos_go_proto"
"google.golang.org/protobuf/proto"
@@ -263,6 +261,26 @@ func (o *ColorChannelOrder) UnmarshalYAML(unmarshal func(interface{}) error) err
return nil
}
// The expected shape for the input layer of a mode. Usually this shape is
// (batch, resolution, resolution, channels) but sometimes it is not.
type ShapeComponent string
const (
ShapeBatch ShapeComponent = "Batch"
ShapeWidth = "Width"
ShapeHeight = "Height"
ShapeColor = "Color"
)
func DefaultPhotoInputShape() []ShapeComponent {
return []ShapeComponent{
ShapeBatch,
ShapeHeight,
ShapeWidth,
ShapeColor,
}
}
// PhotoInput represents an input description for a photo input for a model.
type PhotoInput struct {
Name string `yaml:"Name,omitempty" json:"name,omitempty"`
@@ -272,6 +290,7 @@ type PhotoInput struct {
OutputIndex int `yaml:"Index,omitempty" json:"index,omitempty"`
Height int64 `yaml:"Height,omitempty" json:"height,omitempty"`
Width int64 `yaml:"Width,omitempty" json:"width,omitempty"`
Shape []ShapeComponent `yaml:"Shape,omitempty" json:"shape,omitempty"`
}
// IsDynamic checks if image dimensions are not defined, so the model accepts any size.
@@ -331,6 +350,10 @@ func (p *PhotoInput) Merge(other *PhotoInput) {
p.Width = other.Width
}
if p.Shape == nil && other.Shape != nil {
p.Shape = other.Shape
}
if p.ResizeOperation == UndefinedResizeOperation {
p.ResizeOperation = other.ResizeOperation
}
@@ -401,83 +424,10 @@ func (m *ModelInfo) Merge(other *ModelInfo) {
// IsComplete checks if the model input and output are defined.
func (m ModelInfo) IsComplete() bool {
return m.Input != nil && m.Output != nil
return m.Input != nil && m.Output != nil && m.Input.Shape != nil
}
// GetInputAndOutputFromMetaSignature returns the signatures from a MetaGraphDef
// and uses them to build PhotoInput and ModelOutput structs, that will complete
// ModelInfo struct.
func GetInputAndOutputFromMetaSignature(meta *pb.MetaGraphDef) (*PhotoInput, *ModelOutput, error) {
if meta == nil {
return nil, nil, fmt.Errorf("GetInputAndOutputFromSignature: nil input")
}
sig := meta.GetSignatureDef()
for k, v := range sig {
inputs := v.GetInputs()
outputs := v.GetOutputs()
if len(inputs) == 1 && len(outputs) == 1 {
_, inputTensor := GetOne(inputs)
outputVarName, outputTensor := GetOne(outputs)
if inputTensor != nil && (*inputTensor).GetTensorShape() != nil &&
outputTensor != nil && (*outputTensor).GetTensorShape() != nil {
inputDims := (*inputTensor).GetTensorShape().Dim
outputDims := (*outputTensor).GetTensorShape().Dim
if inputDims[3].GetSize() != ExpectedChannels {
log.Warnf("tensorflow: skipping signature %v because channels are expected to be %d, have %d",
k, ExpectedChannels, inputDims[3].GetSize())
}
if len(inputDims) == 4 &&
inputDims[3].GetSize() == ExpectedChannels &&
len(outputDims) == 2 {
var err error
var inputIdx, outputIdx = 0, 0
inputName, inputIndex, found := strings.Cut((*inputTensor).GetName(), ":")
if found {
inputIdx, err = strconv.Atoi(inputIndex)
if err != nil {
return nil, nil, fmt.Errorf("could not parse index %s (%s)", inputIndex, clean.Error(err))
}
}
outputName, outputIndex, found := strings.Cut((*outputTensor).GetName(), ":")
if found {
outputIdx, err = strconv.Atoi(outputIndex)
if err != nil {
return nil, nil, fmt.Errorf("could not parse index: %s (%s)", outputIndex, clean.Error(err))
}
}
return &PhotoInput{
Name: inputName,
OutputIndex: inputIdx,
Height: inputDims[1].GetSize(),
Width: inputDims[2].GetSize(),
}, &ModelOutput{
Name: outputName,
OutputIndex: outputIdx,
NumOutputs: outputDims[1].GetSize(),
OutputsLogits: strings.Contains(Deref(outputVarName, ""), "logits"),
}, nil
}
}
}
}
return nil, nil, fmt.Errorf("GetInputAndOutputFromMetaSignature: Could not find a valid signature")
}
func GetModelInfo(savedModelPath string) ([]ModelInfo, error) {
func GetModelTagsInfo(savedModelPath string) ([]ModelInfo, error) {
savedModel := filepath.Join(savedModelPath, "saved_model.pb")
data, err := os.ReadFile(savedModel)
@@ -499,20 +449,10 @@ func GetModelInfo(savedModelPath string) ([]ModelInfo, error) {
for i := range metas {
def := metas[i].GetMetaInfoDef()
input, output, modelErr := GetInputAndOutputFromMetaSignature(metas[i])
newModel := ModelInfo{
models = append(models, ModelInfo{
TFVersion: def.GetTensorflowVersion(),
Tags: def.GetTags(),
Input: input,
Output: output,
}
if modelErr != nil {
log.Errorf("vision: could not determine model inputs and outputs from TensorFlow %s signatures (%s)", newModel.TFVersion, clean.Error(modelErr))
}
models = append(models, newModel)
})
}
return models, nil

View File

@@ -2,6 +2,7 @@ package tensorflow
import (
"encoding/json"
"path/filepath"
"testing"
"github.com/stretchr/testify/assert"
@@ -16,6 +17,22 @@ var allOperations = []ResizeOperation{
Padding,
}
func TestGetModelTagsInfo(t *testing.T) {
info, err := GetModelTagsInfo(
filepath.Join(assetsPath, "models", "nasnet"))
if err != nil {
t.Fatal(err)
}
if len(info) != 1 {
t.Fatalf("Expected 1 info but got %d", len(info))
} else if len(info[0].Tags) != 1 {
t.Fatalf("Expected 1 tag, but got %d", len(info[0].Tags))
} else if info[0].Tags[0] != "photoprism" {
t.Fatalf("Expected tag photoprism, but have %s", info[0].Tags[0])
}
}
func TestResizeOperations(t *testing.T) {
for i := range allOperations {
text := allOperations[i].String()
@@ -119,7 +136,7 @@ func TestColorChannelOrderJSON(t *testing.T) {
[]byte(exampleOrderJSON), &order)
if err != nil {
t.Fatal("could not unmarshal the example operation")
t.Fatal("could not unmarshal the example color order")
}
for i := range allColorChannelOrders {
@@ -148,7 +165,7 @@ func TestColorChannelOrderYAML(t *testing.T) {
[]byte(exampleOrderYAML), &order)
if err != nil {
t.Fatal("could not unmarshal the example operation")
t.Fatal("could not unmarshal the example color order")
}
for i := range allColorChannelOrders {
@@ -193,3 +210,68 @@ func TestOrderIndices(t *testing.T) {
assert.Equal(t, powerFx(r)+2*powerFx(g)+3*powerFx(b), int(allColorChannelOrders[i]))
}
}
var allShapeComponents = []ShapeComponent{
ShapeBatch,
ShapeWidth,
ShapeHeight,
ShapeColor,
}
const exampleShapeComponentJSON = `"Batch"`
func TestShapeComponentJSON(t *testing.T) {
var comp ShapeComponent
err := json.Unmarshal(
[]byte(exampleShapeComponentJSON), &comp)
if err != nil {
t.Fatal("could not unmarshal the example shape component")
}
for i := range allShapeComponents {
serialized, err := json.Marshal(allShapeComponents[i])
if err != nil {
t.Fatalf("could not marshal %v: %v",
allShapeComponents[i], err)
}
err = json.Unmarshal(serialized, &comp)
if err != nil {
t.Fatalf("could not unmarshal %s: %v",
string(serialized), err)
}
assert.Equal(t, comp, allShapeComponents[i])
}
}
const exampleShapeComponentYAML = "Batch"
func TestShapeComponentYAML(t *testing.T) {
var comp ShapeComponent
err := yaml.Unmarshal(
[]byte(exampleShapeComponentYAML), &comp)
if err != nil {
t.Fatal("could not unmarshal the example operation")
}
for i := range allShapeComponents {
serialized, err := yaml.Marshal(allShapeComponents[i])
if err != nil {
t.Fatalf("could not marshal %v: %v",
allShapeComponents[i], err)
}
err = yaml.Unmarshal(serialized, &comp)
if err != nil {
t.Fatalf("could not unmarshal %s: %v",
string(serialized), err)
}
assert.Equal(t, comp, allShapeComponents[i])
}
}

View File

@@ -25,18 +25,33 @@ func SavedModel(modelPath string, tags []string) (model *tf.SavedModel, err erro
// GuessInputAndOutput tries to inspect a loaded saved model to build the
// ModelInfo struct
func GuessInputAndOutput(model *tf.SavedModel) (input *PhotoInput, output *ModelOutput, err error) {
if model == nil {
return nil, nil, fmt.Errorf("tensorflow: GuessInputAndOutput received a nil input")
}
modelOps := model.Graph.Operations()
for i := range modelOps {
if strings.HasPrefix(modelOps[i].Type(), "Placeholder") &&
modelOps[i].NumOutputs() == 1 &&
modelOps[i].Output(0).Shape().NumDimensions() == 4 &&
modelOps[i].Output(0).Shape().Size(3) == ExpectedChannels { // check the channels are 3
modelOps[i].Output(0).Shape().NumDimensions() == 4 {
shape := modelOps[i].Output(0).Shape()
input = &PhotoInput{
Name: modelOps[i].Name(),
Height: shape.Size(1),
Width: shape.Size(2),
var comps []ShapeComponent
if shape.Size(3) == ExpectedChannels {
comps = []ShapeComponent{ShapeBatch, ShapeHeight, ShapeWidth, ShapeColor}
} else if shape.Size(1) == ExpectedChannels { // check the channels are 3
comps = []ShapeComponent{ShapeBatch, ShapeColor, ShapeHeight, ShapeWidth, ShapeColor}
}
if comps != nil {
input = &PhotoInput{
Name: modelOps[i].Name(),
Height: shape.Size(1),
Width: shape.Size(2),
Shape: comps,
}
}
} else if (modelOps[i].Type() == "Softmax" || strings.HasPrefix(modelOps[i].Type(), "StatefulPartitionedCall")) &&
modelOps[i].NumOutputs() == 1 && modelOps[i].Output(0).Shape().NumDimensions() == 2 {
@@ -59,34 +74,57 @@ func GetInputAndOutputFromSavedModel(model *tf.SavedModel) (*PhotoInput, *ModelO
return nil, nil, fmt.Errorf("GetInputAndOutputFromSavedModel: nil input")
}
log.Debugf("tensorflow: found %d signatures", len(model.Signatures))
for k, v := range model.Signatures {
var photoInput *PhotoInput
var modelOutput *ModelOutput
inputs := v.Inputs
outputs := v.Outputs
if len(inputs) == 1 && len(outputs) == 1 {
_, inputTensor := GetOne(inputs)
outputVarName, outputTensor := GetOne(outputs)
if len(inputs) >= 1 && len(outputs) >= 1 {
for _, inputTensor := range inputs {
if inputTensor.Shape.NumDimensions() == 4 {
var comps []ShapeComponent
if inputTensor.Shape.Size(3) == ExpectedChannels {
comps = []ShapeComponent{ShapeBatch, ShapeHeight, ShapeWidth, ShapeColor}
} else if inputTensor.Shape.Size(1) == ExpectedChannels { // check the channels are 3
comps = []ShapeComponent{ShapeBatch, ShapeColor, ShapeHeight, ShapeWidth}
} else {
log.Debugf("tensorflow: shape %d", inputTensor.Shape.Size(1))
}
if inputTensor != nil && outputTensor != nil {
if inputTensor.Shape.Size(3) != ExpectedChannels {
log.Warnf("tensorflow: skipping signature %v because channels are expected to be %d, have %d",
k, ExpectedChannels, inputTensor.Shape.Size(3))
}
if comps == nil {
log.Warnf("tensorflow: skipping signature %v because we could not find the color component", k)
} else {
var inputIdx = 0
var err error
if inputTensor.Shape.NumDimensions() == 4 &&
inputTensor.Shape.Size(3) == ExpectedChannels &&
outputTensor.Shape.NumDimensions() == 2 {
var inputIdx, outputIdx = 0, 0
var err error
inputName, inputIndex, found := strings.Cut(inputTensor.Name, ":")
if found {
inputIdx, err = strconv.Atoi(inputIndex)
if err != nil {
return nil, nil, fmt.Errorf("could not parse index %s (%s)", inputIndex, clean.Error(err))
}
}
inputName, inputIndex, found := strings.Cut(inputTensor.Name, ":")
if found {
inputIdx, err = strconv.Atoi(inputIndex)
if err != nil {
return nil, nil, fmt.Errorf("could not parse index %s (%s)", inputIndex, clean.Error(err))
photoInput = &PhotoInput{
Name: inputName,
OutputIndex: inputIdx,
Height: inputTensor.Shape.Size(1),
Width: inputTensor.Shape.Size(2),
Shape: comps,
}
}
break
}
}
for outputVarName, outputTensor := range outputs {
var err error
var outputIdx int
if outputTensor.Shape.NumDimensions() == 2 {
outputName, outputIndex, found := strings.Cut(outputTensor.Name, ":")
if found {
outputIdx, err = strconv.Atoi(outputIndex)
@@ -95,23 +133,20 @@ func GetInputAndOutputFromSavedModel(model *tf.SavedModel) (*PhotoInput, *ModelO
}
}
return &PhotoInput{
Name: inputName,
OutputIndex: inputIdx,
Height: inputTensor.Shape.Size(1),
Width: inputTensor.Shape.Size(2),
}, &ModelOutput{
Name: outputName,
OutputIndex: outputIdx,
NumOutputs: outputTensor.Shape.Size(1),
OutputsLogits: strings.Contains(Deref(outputVarName, ""), "logits"),
}, nil
modelOutput = &ModelOutput{
Name: outputName,
OutputIndex: outputIdx,
NumOutputs: outputTensor.Shape.Size(1),
OutputsLogits: strings.Contains(outputVarName, "logits"),
}
break
}
}
}
if photoInput != nil && modelOutput != nil {
return photoInput, modelOutput, nil
}
}
return nil, nil, fmt.Errorf("GetInputAndOutputFromSignature: could not find valid signatures")
}

View File

@@ -0,0 +1,96 @@
package tensorflow
import (
"path/filepath"
"slices"
"testing"
"github.com/photoprism/photoprism/pkg/fs"
)
var assetsPath = fs.Abs("../../../assets")
var testDataPath = fs.Abs("testdata")
func TestTF1ModelLoad(t *testing.T) {
model, err := SavedModel(
filepath.Join(assetsPath, "models", "nasnet"),
[]string{"photoprism"})
if err != nil {
t.Fatal(err)
}
input, output, err := GetInputAndOutputFromSavedModel(model)
if err == nil {
t.Fatalf("TF1 does not have signatures, but GetInput worked")
}
input, output, err = GuessInputAndOutput(model)
if err != nil {
t.Fatal(err)
}
if input == nil {
t.Fatal("Could not get the input")
} else if output == nil {
t.Fatal("Could not get the output")
} else if input.Shape == nil {
t.Fatal("Could not get the shape")
} else {
t.Logf("Shape: %v", input.Shape)
}
}
func TestTF2ModelLoad(t *testing.T) {
model, err := SavedModel(
filepath.Join(testDataPath, "tf2"),
[]string{"serve"})
if err != nil {
t.Fatal(err)
}
input, output, err := GetInputAndOutputFromSavedModel(model)
if err != nil {
t.Fatal(err)
}
if input == nil {
t.Fatal("Could not get the input")
} else if output == nil {
t.Fatal("Could not get the output")
} else if input.Shape == nil {
t.Fatal("Could not get the shape")
} else if !slices.Equal(input.Shape, DefaultPhotoInputShape()) {
t.Fatalf("Invalid shape calculated. Expected BHWC, got %v",
input.Shape)
}
}
func TestTF2ModelBCHWLoad(t *testing.T) {
model, err := SavedModel(
filepath.Join(testDataPath, "tf2_bchw"),
[]string{"serve"})
if err != nil {
t.Fatal(err)
}
input, output, err := GetInputAndOutputFromSavedModel(model)
if err != nil {
t.Fatal(err)
}
if input == nil {
t.Fatal("Could not get the input")
} else if output == nil {
t.Fatal("Could not get the output")
} else if input.Shape == nil {
t.Fatal("Could not get the shape")
} else if !slices.Equal(input.Shape, []ShapeComponent{
ShapeBatch, ShapeColor, ShapeHeight, ShapeWidth,
}) {
t.Fatalf("Invalid shape calculated. Expected BCHW, got %v",
input.Shape)
}
}

View File

@@ -0,0 +1,112 @@
package tensorflow
import (
"errors"
"fmt"
tf "github.com/wamuir/graft/tensorflow"
)
type ImageTensorBuilder struct {
data []float32
shape []ShapeComponent
resolution int
rIndex int
gIndex int
bIndex int
}
func shapeLen(c ShapeComponent, res int) int {
switch c {
case ShapeBatch:
return 1
case ShapeHeight, ShapeWidth:
return res
case ShapeColor:
return 3
default:
return -1
}
}
func NewImageTensorBuilder(input *PhotoInput) (*ImageTensorBuilder, error) {
if len(input.Shape) != 4 {
return nil, fmt.Errorf("tensorflow: the shape length is %d and should be 4", len(input.Shape))
}
if input.Shape[0] != ShapeBatch {
return nil, errors.New("tensorflow: the first shape component must be Batch")
}
if input.Shape[1] != ShapeColor && input.Shape[3] != ShapeColor {
return nil, fmt.Errorf("tensorflow: unsupported shape %v", input.Shape)
}
totalSize := 1
for i := range input.Shape {
totalSize *= shapeLen(input.Shape[i], input.Resolution())
}
// Allocate just one big chunk
flatBuffer := make([]float32, totalSize)
rIndex, gIndex, bIndex := input.ColorChannelOrder.Indices()
return &ImageTensorBuilder{
data: flatBuffer,
shape: input.Shape,
resolution: input.Resolution(),
rIndex: rIndex,
gIndex: gIndex,
bIndex: bIndex,
}, nil
}
func (t *ImageTensorBuilder) Set(x, y int, r, g, b float32) {
t.data[t.flatIndex(x, y, t.rIndex)] = r
t.data[t.flatIndex(x, y, t.gIndex)] = g
t.data[t.flatIndex(x, y, t.bIndex)] = b
}
func (t *ImageTensorBuilder) flatIndex(x, y, c int) int {
shapeVal := func(s ShapeComponent) int {
switch s {
case ShapeBatch:
return 0
case ShapeColor:
return c
case ShapeWidth:
return x
case ShapeHeight:
return y
default:
return 0
}
}
idx := 0
for _, s := range t.shape {
idx = idx*shapeLen(s, t.resolution) + shapeVal(s)
}
return idx
}
func (t *ImageTensorBuilder) BuildTensor() (*tf.Tensor, error) {
arr := make([][][][]float32, shapeLen(t.shape[0], t.resolution))
offset := 0
for i := 0; i < shapeLen(t.shape[0], t.resolution); i++ {
arr[i] = make([][][]float32, shapeLen(t.shape[1], t.resolution))
for j := 0; j < shapeLen(t.shape[1], t.resolution); j++ {
arr[i][j] = make([][]float32, shapeLen(t.shape[2], t.resolution))
for k := 0; k < shapeLen(t.shape[2], t.resolution); k++ {
arr[i][j][k] = t.data[offset : offset+shapeLen(t.shape[3], t.resolution)]
offset += shapeLen(t.shape[3], t.resolution)
}
}
}
return tf.NewTensor(arr)
}

Binary file not shown.

Binary file not shown.

View File

@@ -22,6 +22,7 @@ var (
Width: 224,
ResizeOperation: tensorflow.CenterCrop,
ColorChannelOrder: tensorflow.RGB,
Shape: tensorflow.DefaultPhotoInputShape(),
Intervals: []tensorflow.Interval{
{
Start: -1.0,
@@ -52,6 +53,7 @@ var (
Height: 224,
Width: 224,
OutputIndex: 0,
Shape: tensorflow.DefaultPhotoInputShape(),
},
Output: &tensorflow.ModelOutput{
Name: "nsfw_cls_model/final_prediction",
@@ -74,6 +76,7 @@ var (
Name: "input",
Height: 160,
Width: 160,
Shape: tensorflow.DefaultPhotoInputShape(),
OutputIndex: 0,
},
Output: &tensorflow.ModelOutput{

View File

@@ -16,6 +16,11 @@ Models:
ColorChannelOrder: RGB
Height: 224
Width: 224
Shape:
- Batch
- Height
- Width
- Color
Output:
Name: predictions/Softmax
Outputs: 1000
@@ -31,6 +36,11 @@ Models:
Name: input_tensor
Height: 224
Width: 224
Shape:
- Batch
- Height
- Width
- Color
Output:
Name: nsfw_cls_model/final_prediction
Outputs: 5
@@ -46,6 +56,11 @@ Models:
Name: input
Height: 160
Width: 160
Shape:
- Batch
- Height
- Width
- Color
Output:
Name: embeddings
Outputs: 512