mirror of
https://github.com/swdee/go-rknnlite.git
synced 2025-09-27 03:35:56 +08:00
188 lines
5.0 KiB
Go
188 lines
5.0 KiB
Go
/*
|
|
Example code showing how to perform inferencing using a Retina Face model.
|
|
*/
|
|
package main
|
|
|
|
import (
|
|
"flag"
|
|
"fmt"
|
|
"github.com/swdee/go-rknnlite"
|
|
"github.com/swdee/go-rknnlite/postprocess"
|
|
"github.com/swdee/go-rknnlite/preprocess"
|
|
"github.com/swdee/go-rknnlite/render"
|
|
"gocv.io/x/gocv"
|
|
"log"
|
|
"os"
|
|
"strings"
|
|
"time"
|
|
)
|
|
|
|
func main() {
|
|
// disable logging timestamps
|
|
log.SetFlags(0)
|
|
|
|
// read in cli flags
|
|
modelFile := flag.String("m", "../data/models/rk3588/retinaface-320-rk3588.rknn", "RKNN compiled Retina Face model file")
|
|
imgFile := flag.String("i", "../data/face.jpg", "Image file to run inference on")
|
|
saveFile := flag.String("o", "../data/face-out.jpg", "The output JPG file with face detection markers")
|
|
rkPlatform := flag.String("p", "rk3588", "Rockchip CPU Model number [rk3562|rk3566|rk3568|rk3576|rk3582|rk3582|rk3588]")
|
|
|
|
flag.Parse()
|
|
|
|
err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores)
|
|
|
|
if err != nil {
|
|
log.Printf("Failed to set CPU Affinity: %v\n", err)
|
|
}
|
|
|
|
// check if user specified model file or if default is being used. if default
|
|
// then pick the default platform model to use.
|
|
if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" {
|
|
*modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform)
|
|
}
|
|
|
|
// create rknn runtime instance
|
|
rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile)
|
|
|
|
if err != nil {
|
|
log.Fatal("Error initializing RKNN runtime: ", err)
|
|
}
|
|
|
|
// optional querying of model file tensors and SDK version for printing
|
|
// to stdout. not necessary for production inference code
|
|
err = rt.Query(os.Stdout)
|
|
|
|
if err != nil {
|
|
log.Fatal("Error querying runtime: ", err)
|
|
}
|
|
|
|
retinaProcessor := postprocess.NewRetinaFace(postprocess.WiderFaceParams())
|
|
|
|
// retinaface does not use class names in its model, so define a single placeholder "face"
|
|
classNames := []string{"face"}
|
|
|
|
// load image
|
|
img := gocv.IMRead(*imgFile, gocv.IMReadColor)
|
|
|
|
if img.Empty() {
|
|
log.Fatal("Error reading image from: ", *imgFile)
|
|
}
|
|
|
|
// convert colorspace and resize image
|
|
rgbImg := gocv.NewMat()
|
|
gocv.CvtColor(img, &rgbImg, gocv.ColorBGRToRGB)
|
|
|
|
resizer := preprocess.NewResizer(img.Cols(), img.Rows(),
|
|
int(rt.InputAttrs()[0].Dims[1]), int(rt.InputAttrs()[0].Dims[2]))
|
|
|
|
cropImg := rgbImg.Clone()
|
|
resizer.LetterBoxResize(rgbImg, &cropImg, render.Black)
|
|
|
|
defer img.Close()
|
|
defer rgbImg.Close()
|
|
defer cropImg.Close()
|
|
|
|
start := time.Now()
|
|
|
|
// perform inference on image file
|
|
outputs, err := rt.Inference([]gocv.Mat{cropImg})
|
|
|
|
if err != nil {
|
|
log.Fatal("Runtime inferencing failed with error: ", err)
|
|
}
|
|
|
|
endInference := time.Now()
|
|
|
|
detectFaces := retinaProcessor.DetectFaces(outputs, resizer)
|
|
detectResults := detectFaces.GetDetectResults()
|
|
keyPoints := retinaProcessor.GetFaceLandmarks(detectFaces)
|
|
|
|
endDetect := time.Now()
|
|
|
|
render.FaceKeyPoints(&img, keyPoints)
|
|
|
|
render.DetectionBoxes(&img, detectResults, classNames,
|
|
render.DefaultFont(), 2)
|
|
|
|
endRendering := time.Now()
|
|
|
|
// output detection boxes to stdout
|
|
for _, detResult := range detectResults {
|
|
fmt.Printf("face @ (%d %d %d %d) %f\n", detResult.Box.Left, detResult.Box.Top, detResult.Box.Right, detResult.Box.Bottom, detResult.Probability)
|
|
}
|
|
|
|
log.Printf("Model first run speed: inference=%s, post processing=%s, rendering=%s, total time=%s\n",
|
|
endInference.Sub(start).String(),
|
|
endDetect.Sub(endInference).String(),
|
|
endRendering.Sub(endDetect).String(),
|
|
endRendering.Sub(start).String(),
|
|
)
|
|
|
|
// Save the result
|
|
if ok := gocv.IMWrite(*saveFile, img); !ok {
|
|
log.Fatal("Failed to save the image")
|
|
}
|
|
|
|
log.Printf("Saved object detection result to %s\n", *saveFile)
|
|
|
|
// free outputs allocated in C memory after you have finished post processing
|
|
err = outputs.Free()
|
|
|
|
if err != nil {
|
|
log.Fatal("Error freeing Outputs: ", err)
|
|
}
|
|
|
|
// optional code. run benchmark to get average time
|
|
runBenchmark(rt, retinaProcessor, []gocv.Mat{cropImg}, classNames, resizer, img)
|
|
|
|
// close runtime and release resources
|
|
err = rt.Close()
|
|
|
|
if err != nil {
|
|
log.Fatal("Error closing RKNN runtime: ", err)
|
|
}
|
|
|
|
log.Println("done")
|
|
}
|
|
|
|
func runBenchmark(rt *rknnlite.Runtime, retinaProcessor *postprocess.RetinaFace,
|
|
mats []gocv.Mat, classNames []string, resizer *preprocess.Resizer,
|
|
srcImg gocv.Mat) {
|
|
|
|
count := 100
|
|
start := time.Now()
|
|
|
|
for i := 0; i < count; i++ {
|
|
// perform inference on image file
|
|
outputs, err := rt.Inference(mats)
|
|
|
|
if err != nil {
|
|
log.Fatal("Runtime inferencing failed with error: ", err)
|
|
}
|
|
|
|
// post process
|
|
detectFaces := retinaProcessor.DetectFaces(outputs, resizer)
|
|
detectResults := detectFaces.GetDetectResults()
|
|
keyPoints := retinaProcessor.GetFaceLandmarks(detectFaces)
|
|
|
|
render.FaceKeyPoints(&srcImg, keyPoints)
|
|
|
|
render.DetectionBoxes(&srcImg, detectResults, classNames,
|
|
render.DefaultFont(), 2)
|
|
|
|
err = outputs.Free()
|
|
|
|
if err != nil {
|
|
log.Fatal("Error freeing Outputs: ", err)
|
|
}
|
|
}
|
|
|
|
end := time.Now()
|
|
total := end.Sub(start)
|
|
avg := total / time.Duration(count)
|
|
|
|
log.Printf("Benchmark time=%s, count=%d, average total time=%s\n",
|
|
total.String(), count, avg.String(),
|
|
)
|
|
}
|