Files
go-rknnlite/example/retinaface/retinaface.go

188 lines
5.0 KiB
Go

/*
Example code showing how to perform inferencing using a Retina Face model.
*/
package main
import (
"flag"
"fmt"
"github.com/swdee/go-rknnlite"
"github.com/swdee/go-rknnlite/postprocess"
"github.com/swdee/go-rknnlite/preprocess"
"github.com/swdee/go-rknnlite/render"
"gocv.io/x/gocv"
"log"
"os"
"strings"
"time"
)
func main() {
// disable logging timestamps
log.SetFlags(0)
// read in cli flags
modelFile := flag.String("m", "../data/models/rk3588/retinaface-320-rk3588.rknn", "RKNN compiled Retina Face model file")
imgFile := flag.String("i", "../data/face.jpg", "Image file to run inference on")
saveFile := flag.String("o", "../data/face-out.jpg", "The output JPG file with face detection markers")
rkPlatform := flag.String("p", "rk3588", "Rockchip CPU Model number [rk3562|rk3566|rk3568|rk3576|rk3582|rk3582|rk3588]")
flag.Parse()
err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores)
if err != nil {
log.Printf("Failed to set CPU Affinity: %v\n", err)
}
// check if user specified model file or if default is being used. if default
// then pick the default platform model to use.
if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" {
*modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform)
}
// create rknn runtime instance
rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile)
if err != nil {
log.Fatal("Error initializing RKNN runtime: ", err)
}
// optional querying of model file tensors and SDK version for printing
// to stdout. not necessary for production inference code
err = rt.Query(os.Stdout)
if err != nil {
log.Fatal("Error querying runtime: ", err)
}
retinaProcessor := postprocess.NewRetinaFace(postprocess.WiderFaceParams())
// retinaface does not use class names in its model, so define a single placeholder "face"
classNames := []string{"face"}
// load image
img := gocv.IMRead(*imgFile, gocv.IMReadColor)
if img.Empty() {
log.Fatal("Error reading image from: ", *imgFile)
}
// convert colorspace and resize image
rgbImg := gocv.NewMat()
gocv.CvtColor(img, &rgbImg, gocv.ColorBGRToRGB)
resizer := preprocess.NewResizer(img.Cols(), img.Rows(),
int(rt.InputAttrs()[0].Dims[1]), int(rt.InputAttrs()[0].Dims[2]))
cropImg := rgbImg.Clone()
resizer.LetterBoxResize(rgbImg, &cropImg, render.Black)
defer img.Close()
defer rgbImg.Close()
defer cropImg.Close()
start := time.Now()
// perform inference on image file
outputs, err := rt.Inference([]gocv.Mat{cropImg})
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
endInference := time.Now()
detectFaces := retinaProcessor.DetectFaces(outputs, resizer)
detectResults := detectFaces.GetDetectResults()
keyPoints := retinaProcessor.GetFaceLandmarks(detectFaces)
endDetect := time.Now()
render.FaceKeyPoints(&img, keyPoints)
render.DetectionBoxes(&img, detectResults, classNames,
render.DefaultFont(), 2)
endRendering := time.Now()
// output detection boxes to stdout
for _, detResult := range detectResults {
fmt.Printf("face @ (%d %d %d %d) %f\n", detResult.Box.Left, detResult.Box.Top, detResult.Box.Right, detResult.Box.Bottom, detResult.Probability)
}
log.Printf("Model first run speed: inference=%s, post processing=%s, rendering=%s, total time=%s\n",
endInference.Sub(start).String(),
endDetect.Sub(endInference).String(),
endRendering.Sub(endDetect).String(),
endRendering.Sub(start).String(),
)
// Save the result
if ok := gocv.IMWrite(*saveFile, img); !ok {
log.Fatal("Failed to save the image")
}
log.Printf("Saved object detection result to %s\n", *saveFile)
// free outputs allocated in C memory after you have finished post processing
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
// optional code. run benchmark to get average time
runBenchmark(rt, retinaProcessor, []gocv.Mat{cropImg}, classNames, resizer, img)
// close runtime and release resources
err = rt.Close()
if err != nil {
log.Fatal("Error closing RKNN runtime: ", err)
}
log.Println("done")
}
func runBenchmark(rt *rknnlite.Runtime, retinaProcessor *postprocess.RetinaFace,
mats []gocv.Mat, classNames []string, resizer *preprocess.Resizer,
srcImg gocv.Mat) {
count := 100
start := time.Now()
for i := 0; i < count; i++ {
// perform inference on image file
outputs, err := rt.Inference(mats)
if err != nil {
log.Fatal("Runtime inferencing failed with error: ", err)
}
// post process
detectFaces := retinaProcessor.DetectFaces(outputs, resizer)
detectResults := detectFaces.GetDetectResults()
keyPoints := retinaProcessor.GetFaceLandmarks(detectFaces)
render.FaceKeyPoints(&srcImg, keyPoints)
render.DetectionBoxes(&srcImg, detectResults, classNames,
render.DefaultFont(), 2)
err = outputs.Free()
if err != nil {
log.Fatal("Error freeing Outputs: ", err)
}
}
end := time.Now()
total := end.Sub(start)
avg := total / time.Duration(count)
log.Printf("Benchmark time=%s, count=%d, average total time=%s\n",
total.String(), count, avg.String(),
)
}