/* Example code showing how to perform inferencing using a Retina Face model. */ package main import ( "flag" "fmt" "github.com/swdee/go-rknnlite" "github.com/swdee/go-rknnlite/postprocess" "github.com/swdee/go-rknnlite/preprocess" "github.com/swdee/go-rknnlite/render" "gocv.io/x/gocv" "log" "os" "strings" "time" ) func main() { // disable logging timestamps log.SetFlags(0) // read in cli flags modelFile := flag.String("m", "../data/models/rk3588/retinaface-320-rk3588.rknn", "RKNN compiled Retina Face model file") imgFile := flag.String("i", "../data/face.jpg", "Image file to run inference on") saveFile := flag.String("o", "../data/face-out.jpg", "The output JPG file with face detection markers") rkPlatform := flag.String("p", "rk3588", "Rockchip CPU Model number [rk3562|rk3566|rk3568|rk3576|rk3582|rk3582|rk3588]") flag.Parse() err := rknnlite.SetCPUAffinityByPlatform(*rkPlatform, rknnlite.FastCores) if err != nil { log.Printf("Failed to set CPU Affinity: %v\n", err) } // check if user specified model file or if default is being used. if default // then pick the default platform model to use. if f := flag.Lookup("m"); f != nil && f.Value.String() == f.DefValue && *rkPlatform != "rk3588" { *modelFile = strings.ReplaceAll(*modelFile, "rk3588", *rkPlatform) } // create rknn runtime instance rt, err := rknnlite.NewRuntimeByPlatform(*rkPlatform, *modelFile) if err != nil { log.Fatal("Error initializing RKNN runtime: ", err) } // optional querying of model file tensors and SDK version for printing // to stdout. not necessary for production inference code err = rt.Query(os.Stdout) if err != nil { log.Fatal("Error querying runtime: ", err) } retinaProcessor := postprocess.NewRetinaFace(postprocess.WiderFaceParams()) // retinaface does not use class names in its model, so define a single placeholder "face" classNames := []string{"face"} // load image img := gocv.IMRead(*imgFile, gocv.IMReadColor) if img.Empty() { log.Fatal("Error reading image from: ", *imgFile) } // convert colorspace and resize image rgbImg := gocv.NewMat() gocv.CvtColor(img, &rgbImg, gocv.ColorBGRToRGB) resizer := preprocess.NewResizer(img.Cols(), img.Rows(), int(rt.InputAttrs()[0].Dims[1]), int(rt.InputAttrs()[0].Dims[2])) cropImg := rgbImg.Clone() resizer.LetterBoxResize(rgbImg, &cropImg, render.Black) defer img.Close() defer rgbImg.Close() defer cropImg.Close() start := time.Now() // perform inference on image file outputs, err := rt.Inference([]gocv.Mat{cropImg}) if err != nil { log.Fatal("Runtime inferencing failed with error: ", err) } endInference := time.Now() detectFaces := retinaProcessor.DetectFaces(outputs, resizer) detectResults := detectFaces.GetDetectResults() keyPoints := retinaProcessor.GetFaceLandmarks(detectFaces) endDetect := time.Now() render.FaceKeyPoints(&img, keyPoints) render.DetectionBoxes(&img, detectResults, classNames, render.DefaultFont(), 2) endRendering := time.Now() // output detection boxes to stdout for _, detResult := range detectResults { fmt.Printf("face @ (%d %d %d %d) %f\n", detResult.Box.Left, detResult.Box.Top, detResult.Box.Right, detResult.Box.Bottom, detResult.Probability) } log.Printf("Model first run speed: inference=%s, post processing=%s, rendering=%s, total time=%s\n", endInference.Sub(start).String(), endDetect.Sub(endInference).String(), endRendering.Sub(endDetect).String(), endRendering.Sub(start).String(), ) // Save the result if ok := gocv.IMWrite(*saveFile, img); !ok { log.Fatal("Failed to save the image") } log.Printf("Saved object detection result to %s\n", *saveFile) // free outputs allocated in C memory after you have finished post processing err = outputs.Free() if err != nil { log.Fatal("Error freeing Outputs: ", err) } // optional code. run benchmark to get average time runBenchmark(rt, retinaProcessor, []gocv.Mat{cropImg}, classNames, resizer, img) // close runtime and release resources err = rt.Close() if err != nil { log.Fatal("Error closing RKNN runtime: ", err) } log.Println("done") } func runBenchmark(rt *rknnlite.Runtime, retinaProcessor *postprocess.RetinaFace, mats []gocv.Mat, classNames []string, resizer *preprocess.Resizer, srcImg gocv.Mat) { count := 100 start := time.Now() for i := 0; i < count; i++ { // perform inference on image file outputs, err := rt.Inference(mats) if err != nil { log.Fatal("Runtime inferencing failed with error: ", err) } // post process detectFaces := retinaProcessor.DetectFaces(outputs, resizer) detectResults := detectFaces.GetDetectResults() keyPoints := retinaProcessor.GetFaceLandmarks(detectFaces) render.FaceKeyPoints(&srcImg, keyPoints) render.DetectionBoxes(&srcImg, detectResults, classNames, render.DefaultFont(), 2) err = outputs.Free() if err != nil { log.Fatal("Error freeing Outputs: ", err) } } end := time.Now() total := end.Sub(start) avg := total / time.Duration(count) log.Printf("Benchmark time=%s, count=%d, average total time=%s\n", total.String(), count, avg.String(), ) }