mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-11-01 04:53:04 +08:00 
			
		
		
		
	Adds ESPCN super resolution filter merged with SRCNN filter.
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
		 Sergey Lavrushkin
					Sergey Lavrushkin
				
			
				
					committed by
					
						 Pedro Arthur
						Pedro Arthur
					
				
			
			
				
	
			
			
			 Pedro Arthur
						Pedro Arthur
					
				
			
						parent
						
							d24c9e55f6
						
					
				
				
					commit
					575b718990
				
			
							
								
								
									
										8
									
								
								configure
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										8
									
								
								configure
									
									
									
									
										vendored
									
									
								
							| @@ -260,7 +260,7 @@ External library support: | |||||||
|   --enable-libsrt          enable Haivision SRT protocol via libsrt [no] |   --enable-libsrt          enable Haivision SRT protocol via libsrt [no] | ||||||
|   --enable-libssh          enable SFTP protocol via libssh [no] |   --enable-libssh          enable SFTP protocol via libssh [no] | ||||||
|   --enable-libtensorflow   enable TensorFlow as a DNN module backend |   --enable-libtensorflow   enable TensorFlow as a DNN module backend | ||||||
|                            for DNN based filters like srcnn [no] |                            for DNN based filters like sr [no] | ||||||
|   --enable-libtesseract    enable Tesseract, needed for ocr filter [no] |   --enable-libtesseract    enable Tesseract, needed for ocr filter [no] | ||||||
|   --enable-libtheora       enable Theora encoding via libtheora [no] |   --enable-libtheora       enable Theora encoding via libtheora [no] | ||||||
|   --enable-libtls          enable LibreSSL (via libtls), needed for https support |   --enable-libtls          enable LibreSSL (via libtls), needed for https support | ||||||
| @@ -3402,8 +3402,8 @@ spectrumsynth_filter_deps="avcodec" | |||||||
| spectrumsynth_filter_select="fft" | spectrumsynth_filter_select="fft" | ||||||
| spp_filter_deps="gpl avcodec" | spp_filter_deps="gpl avcodec" | ||||||
| spp_filter_select="fft idctdsp fdctdsp me_cmp pixblockdsp" | spp_filter_select="fft idctdsp fdctdsp me_cmp pixblockdsp" | ||||||
| srcnn_filter_deps="avformat" | sr_filter_deps="avformat swscale" | ||||||
| srcnn_filter_select="dnn" | sr_filter_select="dnn" | ||||||
| stereo3d_filter_deps="gpl" | stereo3d_filter_deps="gpl" | ||||||
| subtitles_filter_deps="avformat avcodec libass" | subtitles_filter_deps="avformat avcodec libass" | ||||||
| super2xsai_filter_deps="gpl" | super2xsai_filter_deps="gpl" | ||||||
| @@ -6823,7 +6823,7 @@ enabled signature_filter    && prepend avfilter_deps "avcodec avformat" | |||||||
| enabled smartblur_filter    && prepend avfilter_deps "swscale" | enabled smartblur_filter    && prepend avfilter_deps "swscale" | ||||||
| enabled spectrumsynth_filter && prepend avfilter_deps "avcodec" | enabled spectrumsynth_filter && prepend avfilter_deps "avcodec" | ||||||
| enabled spp_filter          && prepend avfilter_deps "avcodec" | enabled spp_filter          && prepend avfilter_deps "avcodec" | ||||||
| enabled srcnn_filter        && prepend avfilter_deps "avformat" | enabled sr_filter           && prepend avfilter_deps "avformat" | ||||||
| enabled subtitles_filter    && prepend avfilter_deps "avformat avcodec" | enabled subtitles_filter    && prepend avfilter_deps "avformat avcodec" | ||||||
| enabled uspp_filter         && prepend avfilter_deps "avcodec" | enabled uspp_filter         && prepend avfilter_deps "avcodec" | ||||||
| enabled zoompan_filter      && prepend avfilter_deps "swscale" | enabled zoompan_filter      && prepend avfilter_deps "swscale" | ||||||
|   | |||||||
| @@ -340,7 +340,7 @@ OBJS-$(CONFIG_SMARTBLUR_FILTER)              += vf_smartblur.o | |||||||
| OBJS-$(CONFIG_SOBEL_FILTER)                  += vf_convolution.o | OBJS-$(CONFIG_SOBEL_FILTER)                  += vf_convolution.o | ||||||
| OBJS-$(CONFIG_SPLIT_FILTER)                  += split.o | OBJS-$(CONFIG_SPLIT_FILTER)                  += split.o | ||||||
| OBJS-$(CONFIG_SPP_FILTER)                    += vf_spp.o | OBJS-$(CONFIG_SPP_FILTER)                    += vf_spp.o | ||||||
| OBJS-$(CONFIG_SRCNN_FILTER)                  += vf_srcnn.o | OBJS-$(CONFIG_SR_FILTER)                     += vf_sr.o | ||||||
| OBJS-$(CONFIG_SSIM_FILTER)                   += vf_ssim.o framesync.o | OBJS-$(CONFIG_SSIM_FILTER)                   += vf_ssim.o framesync.o | ||||||
| OBJS-$(CONFIG_STEREO3D_FILTER)               += vf_stereo3d.o | OBJS-$(CONFIG_STEREO3D_FILTER)               += vf_stereo3d.o | ||||||
| OBJS-$(CONFIG_STREAMSELECT_FILTER)           += f_streamselect.o framesync.o | OBJS-$(CONFIG_STREAMSELECT_FILTER)           += f_streamselect.o framesync.o | ||||||
|   | |||||||
| @@ -328,7 +328,7 @@ extern AVFilter ff_vf_smartblur; | |||||||
| extern AVFilter ff_vf_sobel; | extern AVFilter ff_vf_sobel; | ||||||
| extern AVFilter ff_vf_split; | extern AVFilter ff_vf_split; | ||||||
| extern AVFilter ff_vf_spp; | extern AVFilter ff_vf_spp; | ||||||
| extern AVFilter ff_vf_srcnn; | extern AVFilter ff_vf_sr; | ||||||
| extern AVFilter ff_vf_ssim; | extern AVFilter ff_vf_ssim; | ||||||
| extern AVFilter ff_vf_stereo3d; | extern AVFilter ff_vf_stereo3d; | ||||||
| extern AVFilter ff_vf_streamselect; | extern AVFilter ff_vf_streamselect; | ||||||
|   | |||||||
| @@ -25,9 +25,12 @@ | |||||||
|  |  | ||||||
| #include "dnn_backend_native.h" | #include "dnn_backend_native.h" | ||||||
| #include "dnn_srcnn.h" | #include "dnn_srcnn.h" | ||||||
|  | #include "dnn_espcn.h" | ||||||
| #include "libavformat/avio.h" | #include "libavformat/avio.h" | ||||||
|  |  | ||||||
| typedef enum {INPUT, CONV} LayerType; | typedef enum {INPUT, CONV, DEPTH_TO_SPACE} LayerType; | ||||||
|  |  | ||||||
|  | typedef enum {RELU, TANH, SIGMOID} ActivationFunc; | ||||||
|  |  | ||||||
| typedef struct Layer{ | typedef struct Layer{ | ||||||
|     LayerType type; |     LayerType type; | ||||||
| @@ -37,6 +40,7 @@ typedef struct Layer{ | |||||||
|  |  | ||||||
| typedef struct ConvolutionalParams{ | typedef struct ConvolutionalParams{ | ||||||
|     int32_t input_num, output_num, kernel_size; |     int32_t input_num, output_num, kernel_size; | ||||||
|  |     ActivationFunc activation; | ||||||
|     float* kernel; |     float* kernel; | ||||||
|     float* biases; |     float* biases; | ||||||
| } ConvolutionalParams; | } ConvolutionalParams; | ||||||
| @@ -45,17 +49,22 @@ typedef struct InputParams{ | |||||||
|     int height, width, channels; |     int height, width, channels; | ||||||
| } InputParams; | } InputParams; | ||||||
|  |  | ||||||
|  | typedef struct DepthToSpaceParams{ | ||||||
|  |     int block_size; | ||||||
|  | } DepthToSpaceParams; | ||||||
|  |  | ||||||
| // Represents simple feed-forward convolutional network. | // Represents simple feed-forward convolutional network. | ||||||
| typedef struct ConvolutionalNetwork{ | typedef struct ConvolutionalNetwork{ | ||||||
|     Layer* layers; |     Layer* layers; | ||||||
|     int32_t layers_num; |     int32_t layers_num; | ||||||
| } ConvolutionalNetwork; | } ConvolutionalNetwork; | ||||||
|  |  | ||||||
| static DNNReturnType set_input_output_native(void* model, const DNNData* input, const DNNData* output) | static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNData* output) | ||||||
| { | { | ||||||
|     ConvolutionalNetwork* network = (ConvolutionalNetwork*)model; |     ConvolutionalNetwork* network = (ConvolutionalNetwork*)model; | ||||||
|     InputParams* input_params; |     InputParams* input_params; | ||||||
|     ConvolutionalParams* conv_params; |     ConvolutionalParams* conv_params; | ||||||
|  |     DepthToSpaceParams* depth_to_space_params; | ||||||
|     int cur_width, cur_height, cur_channels; |     int cur_width, cur_height, cur_channels; | ||||||
|     int32_t layer; |     int32_t layer; | ||||||
|  |  | ||||||
| @@ -63,11 +72,17 @@ static DNNReturnType set_input_output_native(void* model, const DNNData* input, | |||||||
|         return DNN_ERROR; |         return DNN_ERROR; | ||||||
|     } |     } | ||||||
|     else{ |     else{ | ||||||
|         network->layers[0].output = input->data; |  | ||||||
|         input_params = (InputParams*)network->layers[0].params; |         input_params = (InputParams*)network->layers[0].params; | ||||||
|         input_params->width = cur_width = input->width; |         input_params->width = cur_width = input->width; | ||||||
|         input_params->height = cur_height = input->height; |         input_params->height = cur_height = input->height; | ||||||
|         input_params->channels = cur_channels = input->channels; |         input_params->channels = cur_channels = input->channels; | ||||||
|  |         if (input->data){ | ||||||
|  |             av_freep(&input->data); | ||||||
|  |         } | ||||||
|  |         network->layers[0].output = input->data = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); | ||||||
|  |         if (!network->layers[0].output){ | ||||||
|  |             return DNN_ERROR; | ||||||
|  |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     for (layer = 1; layer < network->layers_num; ++layer){ |     for (layer = 1; layer < network->layers_num; ++layer){ | ||||||
| @@ -78,8 +93,20 @@ static DNNReturnType set_input_output_native(void* model, const DNNData* input, | |||||||
|                 return DNN_ERROR; |                 return DNN_ERROR; | ||||||
|             } |             } | ||||||
|             cur_channels = conv_params->output_num; |             cur_channels = conv_params->output_num; | ||||||
|             if (layer < network->layers_num - 1){ |             break; | ||||||
|                 if (!network->layers[layer].output){ |         case DEPTH_TO_SPACE: | ||||||
|  |             depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params; | ||||||
|  |             if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){ | ||||||
|  |                 return DNN_ERROR; | ||||||
|  |             } | ||||||
|  |             cur_channels = cur_channels / (depth_to_space_params->block_size * depth_to_space_params->block_size); | ||||||
|  |             cur_height *= depth_to_space_params->block_size; | ||||||
|  |             cur_width *= depth_to_space_params->block_size; | ||||||
|  |             break; | ||||||
|  |         default: | ||||||
|  |             return DNN_ERROR; | ||||||
|  |         } | ||||||
|  |         if (network->layers[layer].output){ | ||||||
|             av_freep(&network->layers[layer].output); |             av_freep(&network->layers[layer].output); | ||||||
|         } |         } | ||||||
|         network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); |         network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); | ||||||
| @@ -87,23 +114,19 @@ static DNNReturnType set_input_output_native(void* model, const DNNData* input, | |||||||
|             return DNN_ERROR; |             return DNN_ERROR; | ||||||
|         } |         } | ||||||
|     } |     } | ||||||
|             else{ |  | ||||||
|                 network->layers[layer].output = output->data; |     output->data = network->layers[network->layers_num - 1].output; | ||||||
|                 if (output->width != cur_width || output->height != cur_height || output->channels != cur_channels){ |     output->height = cur_height; | ||||||
|                     return DNN_ERROR; |     output->width = cur_width; | ||||||
|                 } |     output->channels = cur_channels; | ||||||
|             } |  | ||||||
|             break; |  | ||||||
|         default: |  | ||||||
|             return DNN_ERROR; |  | ||||||
|         } |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     return DNN_SUCCESS; |     return DNN_SUCCESS; | ||||||
| } | } | ||||||
|  |  | ||||||
| // Loads model and its parameters that are stored in a binary file with following structure: | // Loads model and its parameters that are stored in a binary file with following structure: | ||||||
| // layers_num,conv_input_num,conv_output_num,conv_kernel_size,conv_kernel,conv_biases,conv_input_num... | // layers_num,layer_type,layer_parameterss,layer_type,layer_parameters... | ||||||
|  | // For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases | ||||||
|  | // For DEPTH_TO_SPACE layer: block_size | ||||||
| DNNModel* ff_dnn_load_model_native(const char* model_filename) | DNNModel* ff_dnn_load_model_native(const char* model_filename) | ||||||
| { | { | ||||||
|     DNNModel* model = NULL; |     DNNModel* model = NULL; | ||||||
| @@ -111,7 +134,9 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | |||||||
|     AVIOContext* model_file_context; |     AVIOContext* model_file_context; | ||||||
|     int file_size, dnn_size, kernel_size, i; |     int file_size, dnn_size, kernel_size, i; | ||||||
|     int32_t layer; |     int32_t layer; | ||||||
|  |     LayerType layer_type; | ||||||
|     ConvolutionalParams* conv_params; |     ConvolutionalParams* conv_params; | ||||||
|  |     DepthToSpaceParams* depth_to_space_params; | ||||||
|  |  | ||||||
|     model = av_malloc(sizeof(DNNModel)); |     model = av_malloc(sizeof(DNNModel)); | ||||||
|     if (!model){ |     if (!model){ | ||||||
| @@ -156,18 +181,23 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | |||||||
|     } |     } | ||||||
|  |  | ||||||
|     for (layer = 1; layer < network->layers_num; ++layer){ |     for (layer = 1; layer < network->layers_num; ++layer){ | ||||||
|  |         layer_type = (int32_t)avio_rl32(model_file_context); | ||||||
|  |         dnn_size += 4; | ||||||
|  |         switch (layer_type){ | ||||||
|  |         case CONV: | ||||||
|             conv_params = av_malloc(sizeof(ConvolutionalParams)); |             conv_params = av_malloc(sizeof(ConvolutionalParams)); | ||||||
|             if (!conv_params){ |             if (!conv_params){ | ||||||
|                 avio_closep(&model_file_context); |                 avio_closep(&model_file_context); | ||||||
|                 ff_dnn_free_model_native(&model); |                 ff_dnn_free_model_native(&model); | ||||||
|                 return NULL; |                 return NULL; | ||||||
|             } |             } | ||||||
|  |             conv_params->activation = (int32_t)avio_rl32(model_file_context); | ||||||
|             conv_params->input_num = (int32_t)avio_rl32(model_file_context); |             conv_params->input_num = (int32_t)avio_rl32(model_file_context); | ||||||
|             conv_params->output_num = (int32_t)avio_rl32(model_file_context); |             conv_params->output_num = (int32_t)avio_rl32(model_file_context); | ||||||
|             conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); |             conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); | ||||||
|             kernel_size = conv_params->input_num * conv_params->output_num * |             kernel_size = conv_params->input_num * conv_params->output_num * | ||||||
|                           conv_params->kernel_size * conv_params->kernel_size; |                           conv_params->kernel_size * conv_params->kernel_size; | ||||||
|         dnn_size += 12 + (kernel_size + conv_params->output_num << 2); |             dnn_size += 16 + (kernel_size + conv_params->output_num << 2); | ||||||
|             if (dnn_size > file_size || conv_params->input_num <= 0 || |             if (dnn_size > file_size || conv_params->input_num <= 0 || | ||||||
|                 conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ |                 conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ | ||||||
|                 avio_closep(&model_file_context); |                 avio_closep(&model_file_context); | ||||||
| @@ -189,6 +219,24 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | |||||||
|             } |             } | ||||||
|             network->layers[layer].type = CONV; |             network->layers[layer].type = CONV; | ||||||
|             network->layers[layer].params = conv_params; |             network->layers[layer].params = conv_params; | ||||||
|  |             break; | ||||||
|  |         case DEPTH_TO_SPACE: | ||||||
|  |             depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams)); | ||||||
|  |             if (!depth_to_space_params){ | ||||||
|  |                 avio_closep(&model_file_context); | ||||||
|  |                 ff_dnn_free_model_native(&model); | ||||||
|  |                 return NULL; | ||||||
|  |             } | ||||||
|  |             depth_to_space_params->block_size = (int32_t)avio_rl32(model_file_context); | ||||||
|  |             dnn_size += 4; | ||||||
|  |             network->layers[layer].type = DEPTH_TO_SPACE; | ||||||
|  |             network->layers[layer].params = depth_to_space_params; | ||||||
|  |             break; | ||||||
|  |         default: | ||||||
|  |             avio_closep(&model_file_context); | ||||||
|  |             ff_dnn_free_model_native(&model); | ||||||
|  |             return NULL; | ||||||
|  |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     avio_closep(&model_file_context); |     avio_closep(&model_file_context); | ||||||
| @@ -203,7 +251,8 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | |||||||
|     return model; |     return model; | ||||||
| } | } | ||||||
|  |  | ||||||
| static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, int32_t input_num, int32_t output_num, int32_t size) | static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, ActivationFunc activation, | ||||||
|  |                              int32_t input_num, int32_t output_num, int32_t size) | ||||||
| { | { | ||||||
|     ConvolutionalParams* conv_params; |     ConvolutionalParams* conv_params; | ||||||
|     int kernel_size; |     int kernel_size; | ||||||
| @@ -212,6 +261,7 @@ static int set_up_conv_layer(Layer* layer, const float* kernel, const float* bia | |||||||
|     if (!conv_params){ |     if (!conv_params){ | ||||||
|         return DNN_ERROR; |         return DNN_ERROR; | ||||||
|     } |     } | ||||||
|  |     conv_params->activation = activation; | ||||||
|     conv_params->input_num = input_num; |     conv_params->input_num = input_num; | ||||||
|     conv_params->output_num = output_num; |     conv_params->output_num = output_num; | ||||||
|     conv_params->kernel_size = size; |     conv_params->kernel_size = size; | ||||||
| @@ -236,6 +286,7 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) | |||||||
| { | { | ||||||
|     DNNModel* model = NULL; |     DNNModel* model = NULL; | ||||||
|     ConvolutionalNetwork* network = NULL; |     ConvolutionalNetwork* network = NULL; | ||||||
|  |     DepthToSpaceParams* depth_to_space_params; | ||||||
|     int32_t layer; |     int32_t layer; | ||||||
|  |  | ||||||
|     model = av_malloc(sizeof(DNNModel)); |     model = av_malloc(sizeof(DNNModel)); | ||||||
| @@ -253,6 +304,15 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) | |||||||
|     switch (model_type){ |     switch (model_type){ | ||||||
|     case DNN_SRCNN: |     case DNN_SRCNN: | ||||||
|         network->layers_num = 4; |         network->layers_num = 4; | ||||||
|  |         break; | ||||||
|  |     case DNN_ESPCN: | ||||||
|  |         network->layers_num = 5; | ||||||
|  |         break; | ||||||
|  |     default: | ||||||
|  |         av_freep(&network); | ||||||
|  |         av_freep(&model); | ||||||
|  |         return NULL; | ||||||
|  |     } | ||||||
|  |  | ||||||
|     network->layers = av_malloc(network->layers_num * sizeof(Layer)); |     network->layers = av_malloc(network->layers_num * sizeof(Layer)); | ||||||
|     if (!network->layers){ |     if (!network->layers){ | ||||||
| @@ -272,26 +332,40 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) | |||||||
|         return NULL; |         return NULL; | ||||||
|     } |     } | ||||||
|  |  | ||||||
|         if (set_up_conv_layer(network->layers + 1, conv1_kernel, conv1_biases, 1, 64, 9) != DNN_SUCCESS || |     switch (model_type){ | ||||||
|             set_up_conv_layer(network->layers + 2, conv2_kernel, conv2_biases, 64, 32, 1) != DNN_SUCCESS || |     case DNN_SRCNN: | ||||||
|             set_up_conv_layer(network->layers + 3, conv3_kernel, conv3_biases, 32, 1, 5) != DNN_SUCCESS){ |         if (set_up_conv_layer(network->layers + 1, srcnn_conv1_kernel, srcnn_conv1_biases, RELU, 1, 64, 9) != DNN_SUCCESS || | ||||||
|  |             set_up_conv_layer(network->layers + 2, srcnn_conv2_kernel, srcnn_conv2_biases, RELU, 64, 32, 1) != DNN_SUCCESS || | ||||||
|  |             set_up_conv_layer(network->layers + 3, srcnn_conv3_kernel, srcnn_conv3_biases, RELU, 32, 1, 5) != DNN_SUCCESS){ | ||||||
|             ff_dnn_free_model_native(&model); |             ff_dnn_free_model_native(&model); | ||||||
|             return NULL; |             return NULL; | ||||||
|         } |         } | ||||||
|  |         break; | ||||||
|  |     case DNN_ESPCN: | ||||||
|  |         if (set_up_conv_layer(network->layers + 1, espcn_conv1_kernel, espcn_conv1_biases, TANH, 1, 64, 5) != DNN_SUCCESS || | ||||||
|  |             set_up_conv_layer(network->layers + 2, espcn_conv2_kernel, espcn_conv2_biases, TANH, 64, 32, 3) != DNN_SUCCESS || | ||||||
|  |             set_up_conv_layer(network->layers + 3, espcn_conv3_kernel, espcn_conv3_biases, SIGMOID, 32, 4, 3) != DNN_SUCCESS){ | ||||||
|  |             ff_dnn_free_model_native(&model); | ||||||
|  |             return NULL; | ||||||
|  |         } | ||||||
|  |         network->layers[4].type = DEPTH_TO_SPACE; | ||||||
|  |         depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams)); | ||||||
|  |         if (!depth_to_space_params){ | ||||||
|  |             ff_dnn_free_model_native(&model); | ||||||
|  |             return NULL; | ||||||
|  |         } | ||||||
|  |         depth_to_space_params->block_size = 2; | ||||||
|  |         network->layers[4].params = depth_to_space_params; | ||||||
|  |     } | ||||||
|  |  | ||||||
|     model->set_input_output = &set_input_output_native; |     model->set_input_output = &set_input_output_native; | ||||||
|  |  | ||||||
|     return model; |     return model; | ||||||
|     default: |  | ||||||
|         av_freep(&network); |  | ||||||
|         av_freep(&model); |  | ||||||
|         return NULL; |  | ||||||
|     } |  | ||||||
| } | } | ||||||
|  |  | ||||||
| #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) | #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) | ||||||
|  |  | ||||||
| static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int32_t width, int32_t height) | static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int width, int height) | ||||||
| { | { | ||||||
|     int y, x, n_filter, ch, kernel_y, kernel_x; |     int y, x, n_filter, ch, kernel_y, kernel_x; | ||||||
|     int radius = conv_params->kernel_size >> 1; |     int radius = conv_params->kernel_size >> 1; | ||||||
| @@ -313,19 +387,53 @@ static void convolve(const float* input, float* output, const ConvolutionalParam | |||||||
|                         } |                         } | ||||||
|                     } |                     } | ||||||
|                 } |                 } | ||||||
|  |                 switch (conv_params->activation){ | ||||||
|  |                 case RELU: | ||||||
|                     output[n_filter] = FFMAX(output[n_filter], 0.0); |                     output[n_filter] = FFMAX(output[n_filter], 0.0); | ||||||
|  |                     break; | ||||||
|  |                 case TANH: | ||||||
|  |                     output[n_filter] = 2.0f  / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; | ||||||
|  |                     break; | ||||||
|  |                 case SIGMOID: | ||||||
|  |                     output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); | ||||||
|  |                 } | ||||||
|             } |             } | ||||||
|             output += conv_params->output_num; |             output += conv_params->output_num; | ||||||
|         } |         } | ||||||
|     } |     } | ||||||
| } | } | ||||||
|  |  | ||||||
|  | static void depth_to_space(const float* input, float* output, int block_size, int width, int height, int channels) | ||||||
|  | { | ||||||
|  |     int y, x, by, bx, ch; | ||||||
|  |     int new_channels = channels / (block_size * block_size); | ||||||
|  |     int output_linesize = width * channels; | ||||||
|  |     int by_linesize = output_linesize / block_size; | ||||||
|  |     int x_linesize = new_channels * block_size; | ||||||
|  |  | ||||||
|  |     for (y = 0; y < height; ++y){ | ||||||
|  |         for (x = 0; x < width; ++x){ | ||||||
|  |             for (by = 0; by < block_size; ++by){ | ||||||
|  |                 for (bx = 0; bx < block_size; ++bx){ | ||||||
|  |                     for (ch = 0; ch < new_channels; ++ch){ | ||||||
|  |                         output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch]; | ||||||
|  |                     } | ||||||
|  |                     input += new_channels; | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         output += output_linesize; | ||||||
|  |     } | ||||||
|  | } | ||||||
|  |  | ||||||
| DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | ||||||
| { | { | ||||||
|     ConvolutionalNetwork* network = (ConvolutionalNetwork*)model->model; |     ConvolutionalNetwork* network = (ConvolutionalNetwork*)model->model; | ||||||
|     InputParams* input_params; |     int cur_width, cur_height, cur_channels; | ||||||
|     int cur_width, cur_height; |  | ||||||
|     int32_t layer; |     int32_t layer; | ||||||
|  |     InputParams* input_params; | ||||||
|  |     ConvolutionalParams* conv_params; | ||||||
|  |     DepthToSpaceParams* depth_to_space_params; | ||||||
|  |  | ||||||
|     if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){ |     if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){ | ||||||
|         return DNN_ERROR; |         return DNN_ERROR; | ||||||
| @@ -334,6 +442,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | |||||||
|         input_params = (InputParams*)network->layers[0].params; |         input_params = (InputParams*)network->layers[0].params; | ||||||
|         cur_width = input_params->width; |         cur_width = input_params->width; | ||||||
|         cur_height = input_params->height; |         cur_height = input_params->height; | ||||||
|  |         cur_channels = input_params->channels; | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     for (layer = 1; layer < network->layers_num; ++layer){ |     for (layer = 1; layer < network->layers_num; ++layer){ | ||||||
| @@ -342,7 +451,17 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | |||||||
|         } |         } | ||||||
|         switch (network->layers[layer].type){ |         switch (network->layers[layer].type){ | ||||||
|         case CONV: |         case CONV: | ||||||
|             convolve(network->layers[layer - 1].output, network->layers[layer].output, (ConvolutionalParams*)network->layers[layer].params, cur_width, cur_height); |             conv_params = (ConvolutionalParams*)network->layers[layer].params; | ||||||
|  |             convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height); | ||||||
|  |             cur_channels = conv_params->output_num; | ||||||
|  |             break; | ||||||
|  |         case DEPTH_TO_SPACE: | ||||||
|  |             depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params; | ||||||
|  |             depth_to_space(network->layers[layer - 1].output, network->layers[layer].output, | ||||||
|  |                            depth_to_space_params->block_size, cur_width, cur_height, cur_channels); | ||||||
|  |             cur_height *= depth_to_space_params->block_size; | ||||||
|  |             cur_width *= depth_to_space_params->block_size; | ||||||
|  |             cur_channels /= depth_to_space_params->block_size * depth_to_space_params->block_size; | ||||||
|             break; |             break; | ||||||
|         case INPUT: |         case INPUT: | ||||||
|             return DNN_ERROR; |             return DNN_ERROR; | ||||||
| @@ -362,19 +481,13 @@ void ff_dnn_free_model_native(DNNModel** model) | |||||||
|     { |     { | ||||||
|         network = (ConvolutionalNetwork*)(*model)->model; |         network = (ConvolutionalNetwork*)(*model)->model; | ||||||
|         for (layer = 0; layer < network->layers_num; ++layer){ |         for (layer = 0; layer < network->layers_num; ++layer){ | ||||||
|             switch (network->layers[layer].type){ |  | ||||||
|             case CONV: |  | ||||||
|                 if (layer < network->layers_num - 1){ |  | ||||||
|             av_freep(&network->layers[layer].output); |             av_freep(&network->layers[layer].output); | ||||||
|                 } |             if (network->layers[layer].type == CONV){ | ||||||
|                 conv_params = (ConvolutionalParams*)network->layers[layer].params; |                 conv_params = (ConvolutionalParams*)network->layers[layer].params; | ||||||
|                 av_freep(&conv_params->kernel); |                 av_freep(&conv_params->kernel); | ||||||
|                 av_freep(&conv_params->biases); |                 av_freep(&conv_params->biases); | ||||||
|                 av_freep(&conv_params); |  | ||||||
|                 break; |  | ||||||
|             case INPUT: |  | ||||||
|                 av_freep(&network->layers[layer].params); |  | ||||||
|             } |             } | ||||||
|  |             av_freep(&network->layers[layer].params); | ||||||
|         } |         } | ||||||
|         av_freep(network); |         av_freep(network); | ||||||
|         av_freep(model); |         av_freep(model); | ||||||
|   | |||||||
| @@ -25,6 +25,7 @@ | |||||||
|  |  | ||||||
| #include "dnn_backend_tf.h" | #include "dnn_backend_tf.h" | ||||||
| #include "dnn_srcnn.h" | #include "dnn_srcnn.h" | ||||||
|  | #include "dnn_espcn.h" | ||||||
| #include "libavformat/avio.h" | #include "libavformat/avio.h" | ||||||
|  |  | ||||||
| #include <tensorflow/c/c_api.h> | #include <tensorflow/c/c_api.h> | ||||||
| @@ -35,9 +36,7 @@ typedef struct TFModel{ | |||||||
|     TF_Status* status; |     TF_Status* status; | ||||||
|     TF_Output input, output; |     TF_Output input, output; | ||||||
|     TF_Tensor* input_tensor; |     TF_Tensor* input_tensor; | ||||||
|     TF_Tensor* output_tensor; |     DNNData* output_data; | ||||||
|     const DNNData* input_data; |  | ||||||
|     const DNNData* output_data; |  | ||||||
| } TFModel; | } TFModel; | ||||||
|  |  | ||||||
| static void free_buffer(void* data, size_t length) | static void free_buffer(void* data, size_t length) | ||||||
| @@ -78,13 +77,13 @@ static TF_Buffer* read_graph(const char* model_filename) | |||||||
|     return graph_buf; |     return graph_buf; | ||||||
| } | } | ||||||
|  |  | ||||||
| static DNNReturnType set_input_output_tf(void* model, const DNNData* input, const DNNData* output) | static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* output) | ||||||
| { | { | ||||||
|     TFModel* tf_model = (TFModel*)model; |     TFModel* tf_model = (TFModel*)model; | ||||||
|     int64_t input_dims[] = {1, input->height, input->width, input->channels}; |     int64_t input_dims[] = {1, input->height, input->width, input->channels}; | ||||||
|     int64_t output_dims[] = {1, output->height, output->width, output->channels}; |  | ||||||
|     TF_SessionOptions* sess_opts; |     TF_SessionOptions* sess_opts; | ||||||
|     const TF_Operation* init_op = TF_GraphOperationByName(tf_model->graph, "init"); |     const TF_Operation* init_op = TF_GraphOperationByName(tf_model->graph, "init"); | ||||||
|  |     TF_Tensor* output_tensor; | ||||||
|  |  | ||||||
|     // Input operation should be named 'x' |     // Input operation should be named 'x' | ||||||
|     tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x"); |     tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x"); | ||||||
| @@ -100,6 +99,7 @@ static DNNReturnType set_input_output_tf(void* model, const DNNData* input, cons | |||||||
|     if (!tf_model->input_tensor){ |     if (!tf_model->input_tensor){ | ||||||
|         return DNN_ERROR; |         return DNN_ERROR; | ||||||
|     } |     } | ||||||
|  |     input->data = (float*)TF_TensorData(tf_model->input_tensor); | ||||||
|  |  | ||||||
|     // Output operation should be named 'y' |     // Output operation should be named 'y' | ||||||
|     tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y"); |     tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y"); | ||||||
| @@ -107,17 +107,6 @@ static DNNReturnType set_input_output_tf(void* model, const DNNData* input, cons | |||||||
|         return DNN_ERROR; |         return DNN_ERROR; | ||||||
|     } |     } | ||||||
|     tf_model->output.index = 0; |     tf_model->output.index = 0; | ||||||
|     if (tf_model->output_tensor){ |  | ||||||
|         TF_DeleteTensor(tf_model->output_tensor); |  | ||||||
|     } |  | ||||||
|     tf_model->output_tensor = TF_AllocateTensor(TF_FLOAT, output_dims, 4, |  | ||||||
|                                                 output_dims[1] * output_dims[2] * output_dims[3] * sizeof(float)); |  | ||||||
|     if (!tf_model->output_tensor){ |  | ||||||
|         return DNN_ERROR; |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     tf_model->input_data = input; |  | ||||||
|     tf_model->output_data = output; |  | ||||||
|  |  | ||||||
|     if (tf_model->session){ |     if (tf_model->session){ | ||||||
|         TF_CloseSession(tf_model->session, tf_model->status); |         TF_CloseSession(tf_model->session, tf_model->status); | ||||||
| @@ -144,6 +133,26 @@ static DNNReturnType set_input_output_tf(void* model, const DNNData* input, cons | |||||||
|         } |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|  |     // Execute network to get output height, width and number of channels | ||||||
|  |     TF_SessionRun(tf_model->session, NULL, | ||||||
|  |                   &tf_model->input, &tf_model->input_tensor, 1, | ||||||
|  |                   &tf_model->output, &output_tensor, 1, | ||||||
|  |                   NULL, 0, NULL, tf_model->status); | ||||||
|  |     if (TF_GetCode(tf_model->status) != TF_OK){ | ||||||
|  |         return DNN_ERROR; | ||||||
|  |     } | ||||||
|  |     else{ | ||||||
|  |         output->height = TF_Dim(output_tensor, 1); | ||||||
|  |         output->width = TF_Dim(output_tensor, 2); | ||||||
|  |         output->channels = TF_Dim(output_tensor, 3); | ||||||
|  |         output->data = av_malloc(output->height * output->width * output->channels * sizeof(float)); | ||||||
|  |         if (!output->data){ | ||||||
|  |             return DNN_ERROR; | ||||||
|  |         } | ||||||
|  |         tf_model->output_data = output; | ||||||
|  |         TF_DeleteTensor(output_tensor); | ||||||
|  |     } | ||||||
|  |  | ||||||
|     return DNN_SUCCESS; |     return DNN_SUCCESS; | ||||||
| } | } | ||||||
|  |  | ||||||
| @@ -166,7 +175,7 @@ DNNModel* ff_dnn_load_model_tf(const char* model_filename) | |||||||
|     } |     } | ||||||
|     tf_model->session = NULL; |     tf_model->session = NULL; | ||||||
|     tf_model->input_tensor = NULL; |     tf_model->input_tensor = NULL; | ||||||
|     tf_model->output_tensor = NULL; |     tf_model->output_data = NULL; | ||||||
|  |  | ||||||
|     graph_def = read_graph(model_filename); |     graph_def = read_graph(model_filename); | ||||||
|     if (!graph_def){ |     if (!graph_def){ | ||||||
| @@ -215,6 +224,17 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) | |||||||
|         graph_def->length = srcnn_tf_size; |         graph_def->length = srcnn_tf_size; | ||||||
|         graph_def->data_deallocator = free_buffer; |         graph_def->data_deallocator = free_buffer; | ||||||
|         break; |         break; | ||||||
|  |     case DNN_ESPCN: | ||||||
|  |         graph_data = av_malloc(espcn_tf_size); | ||||||
|  |         if (!graph_data){ | ||||||
|  |             TF_DeleteBuffer(graph_def); | ||||||
|  |             return NULL; | ||||||
|  |         } | ||||||
|  |         memcpy(graph_data, espcn_tf_model, espcn_tf_size); | ||||||
|  |         graph_def->data = (void*)graph_data; | ||||||
|  |         graph_def->length = espcn_tf_size; | ||||||
|  |         graph_def->data_deallocator = free_buffer; | ||||||
|  |         break; | ||||||
|     default: |     default: | ||||||
|         TF_DeleteBuffer(graph_def); |         TF_DeleteBuffer(graph_def); | ||||||
|         return NULL; |         return NULL; | ||||||
| @@ -234,7 +254,7 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) | |||||||
|     } |     } | ||||||
|     tf_model->session = NULL; |     tf_model->session = NULL; | ||||||
|     tf_model->input_tensor = NULL; |     tf_model->input_tensor = NULL; | ||||||
|     tf_model->output_tensor = NULL; |     tf_model->output_data = NULL; | ||||||
|  |  | ||||||
|     tf_model->graph = TF_NewGraph(); |     tf_model->graph = TF_NewGraph(); | ||||||
|     tf_model->status = TF_NewStatus(); |     tf_model->status = TF_NewStatus(); | ||||||
| @@ -259,23 +279,21 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) | |||||||
| DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model) | DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model) | ||||||
| { | { | ||||||
|     TFModel* tf_model = (TFModel*)model->model; |     TFModel* tf_model = (TFModel*)model->model; | ||||||
|  |     TF_Tensor* output_tensor; | ||||||
|     memcpy(TF_TensorData(tf_model->input_tensor), tf_model->input_data->data, |  | ||||||
|            tf_model->input_data->height * tf_model->input_data->width * |  | ||||||
|            tf_model->input_data->channels * sizeof(float)); |  | ||||||
|  |  | ||||||
|     TF_SessionRun(tf_model->session, NULL, |     TF_SessionRun(tf_model->session, NULL, | ||||||
|                   &tf_model->input, &tf_model->input_tensor, 1, |                   &tf_model->input, &tf_model->input_tensor, 1, | ||||||
|                   &tf_model->output, &tf_model->output_tensor, 1, |                   &tf_model->output, &output_tensor, 1, | ||||||
|                   NULL, 0, NULL, tf_model->status); |                   NULL, 0, NULL, tf_model->status); | ||||||
|  |  | ||||||
|     if (TF_GetCode(tf_model->status) != TF_OK){ |     if (TF_GetCode(tf_model->status) != TF_OK){ | ||||||
|         return DNN_ERROR; |         return DNN_ERROR; | ||||||
|     } |     } | ||||||
|     else{ |     else{ | ||||||
|         memcpy(tf_model->output_data->data, TF_TensorData(tf_model->output_tensor), |         memcpy(tf_model->output_data->data, TF_TensorData(output_tensor), | ||||||
|                tf_model->output_data->height * tf_model->output_data->width * |                tf_model->output_data->height * tf_model->output_data->width * | ||||||
|                tf_model->output_data->channels * sizeof(float)); |                tf_model->output_data->channels * sizeof(float)); | ||||||
|  |         TF_DeleteTensor(output_tensor); | ||||||
|  |  | ||||||
|         return DNN_SUCCESS; |         return DNN_SUCCESS; | ||||||
|     } |     } | ||||||
| @@ -300,9 +318,7 @@ void ff_dnn_free_model_tf(DNNModel** model) | |||||||
|         if (tf_model->input_tensor){ |         if (tf_model->input_tensor){ | ||||||
|             TF_DeleteTensor(tf_model->input_tensor); |             TF_DeleteTensor(tf_model->input_tensor); | ||||||
|         } |         } | ||||||
|         if (tf_model->output_tensor){ |         av_freep(&tf_model->output_data->data); | ||||||
|             TF_DeleteTensor(tf_model->output_tensor); |  | ||||||
|         } |  | ||||||
|         av_freep(&tf_model); |         av_freep(&tf_model); | ||||||
|         av_freep(model); |         av_freep(model); | ||||||
|     } |     } | ||||||
|   | |||||||
							
								
								
									
										12637
									
								
								libavfilter/dnn_espcn.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12637
									
								
								libavfilter/dnn_espcn.h
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -30,7 +30,7 @@ typedef enum {DNN_SUCCESS, DNN_ERROR} DNNReturnType; | |||||||
|  |  | ||||||
| typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType; | typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType; | ||||||
|  |  | ||||||
| typedef enum {DNN_SRCNN} DNNDefaultModel; | typedef enum {DNN_SRCNN, DNN_ESPCN} DNNDefaultModel; | ||||||
|  |  | ||||||
| typedef struct DNNData{ | typedef struct DNNData{ | ||||||
|     float* data; |     float* data; | ||||||
| @@ -42,7 +42,7 @@ typedef struct DNNModel{ | |||||||
|     void* model; |     void* model; | ||||||
|     // Sets model input and output, while allocating additional memory for intermediate calculations. |     // Sets model input and output, while allocating additional memory for intermediate calculations. | ||||||
|     // Should be called at least once before model execution. |     // Should be called at least once before model execution. | ||||||
|     DNNReturnType (*set_input_output)(void* model, const DNNData* input, const DNNData* output); |     DNNReturnType (*set_input_output)(void* model, DNNData* input, DNNData* output); | ||||||
| } DNNModel; | } DNNModel; | ||||||
|  |  | ||||||
| // Stores pointers to functions for loading, executing, freeing DNN models for one of the backends. | // Stores pointers to functions for loading, executing, freeing DNN models for one of the backends. | ||||||
|   | |||||||
| @@ -20,13 +20,13 @@ | |||||||
|  |  | ||||||
| /** | /** | ||||||
|  * @file |  * @file | ||||||
|  * Default cnn weights for x2 upsampling with srcnn filter. |  * Default cnn weights for x2 upsampling with srcnn model. | ||||||
|  */ |  */ | ||||||
|  |  | ||||||
| #ifndef AVFILTER_DNN_SRCNN_H | #ifndef AVFILTER_DNN_SRCNN_H | ||||||
| #define AVFILTER_DNN_SRCNN_H | #define AVFILTER_DNN_SRCNN_H | ||||||
|  |  | ||||||
| static const float conv1_kernel[] = { | static const float srcnn_conv1_kernel[] = { | ||||||
|     -0.08866338f,     0.055409566f,     0.037196506f,     -0.11961404f, |     -0.08866338f,     0.055409566f,     0.037196506f,     -0.11961404f, | ||||||
|     -0.12341991f,     0.29963422f,      -0.0911817f,      -0.00013613555f, |     -0.12341991f,     0.29963422f,      -0.0911817f,      -0.00013613555f, | ||||||
|     -0.049023595f,    0.038421184f,     -0.077267796f,    0.027273094f, |     -0.049023595f,    0.038421184f,     -0.077267796f,    0.027273094f, | ||||||
| @@ -1325,7 +1325,7 @@ static const float conv1_kernel[] = { | |||||||
|     -0.013759381f,    0.026358005f,     0.088238746f,     0.082134426f |     -0.013759381f,    0.026358005f,     0.088238746f,     0.082134426f | ||||||
| }; | }; | ||||||
|  |  | ||||||
| static const float conv1_biases[] = { | static const float srcnn_conv1_biases[] = { | ||||||
|     -0.016606892f,    -0.011107335f,    -0.0048309686f,   -0.04867378f, |     -0.016606892f,    -0.011107335f,    -0.0048309686f,   -0.04867378f, | ||||||
|     -0.030040957f,    -0.07297248f,     -0.019458665f,    -0.009738028f, |     -0.030040957f,    -0.07297248f,     -0.019458665f,    -0.009738028f, | ||||||
|     0.6951231f,       -0.07369442f,     -0.01354204f,     0.010336088f, |     0.6951231f,       -0.07369442f,     -0.01354204f,     0.010336088f, | ||||||
| @@ -1344,7 +1344,7 @@ static const float conv1_biases[] = { | |||||||
|     0.054407462f,     -0.08068252f,     -0.009446503f,    -0.04663234f |     0.054407462f,     -0.08068252f,     -0.009446503f,    -0.04663234f | ||||||
| }; | }; | ||||||
|  |  | ||||||
| static const float conv2_kernel[] = { | static const float srcnn_conv2_kernel[] = { | ||||||
|     -0.24004751f,     0.1037138f,       0.11173403f,      0.04352092f, |     -0.24004751f,     0.1037138f,       0.11173403f,      0.04352092f, | ||||||
|     -0.23728481f,     0.12153747f,      -0.23676059f,     -0.28548065f, |     -0.23728481f,     0.12153747f,      -0.23676059f,     -0.28548065f, | ||||||
|     -0.612738f,       -0.12218937f,     -0.06005159f,     0.1850652f, |     -0.612738f,       -0.12218937f,     -0.06005159f,     0.1850652f, | ||||||
| @@ -1859,7 +1859,7 @@ static const float conv2_kernel[] = { | |||||||
|     0.11089696f,      -0.08941251f,     -0.3529318f,      0.0654588f |     0.11089696f,      -0.08941251f,     -0.3529318f,      0.0654588f | ||||||
| }; | }; | ||||||
|  |  | ||||||
| static const float conv2_biases[] = { | static const float srcnn_conv2_biases[] = { | ||||||
|     0.12326373f,      0.13270757f,      0.07082674f,      0.051456157f, |     0.12326373f,      0.13270757f,      0.07082674f,      0.051456157f, | ||||||
|     0.058445618f,     0.13153197f,      0.0809729f,       0.10153213f, |     0.058445618f,     0.13153197f,      0.0809729f,       0.10153213f, | ||||||
|     0.055915363f,     0.05228166f,      -0.11212896f,     0.07462141f, |     0.055915363f,     0.05228166f,      -0.11212896f,     0.07462141f, | ||||||
| @@ -1870,7 +1870,7 @@ static const float conv2_biases[] = { | |||||||
|     -0.086404406f,    0.06046943f,      -0.1733751f,      0.2654999f |     -0.086404406f,    0.06046943f,      -0.1733751f,      0.2654999f | ||||||
| }; | }; | ||||||
|  |  | ||||||
| static const float conv3_kernel[] = { | static const float srcnn_conv3_kernel[] = { | ||||||
|     -0.01733648f,     0.01492609f,      0.019393086f,     -0.004445322f, |     -0.01733648f,     0.01492609f,      0.019393086f,     -0.004445322f, | ||||||
|     0.026939709f,     0.00038831023f,   0.004221528f,     0.0050745453f, |     0.026939709f,     0.00038831023f,   0.004221528f,     0.0050745453f, | ||||||
|     0.0129861f,       0.008007169f,     0.008950762f,     0.005279691f, |     0.0129861f,       0.008007169f,     0.008950762f,     0.005279691f, | ||||||
| @@ -2073,7 +2073,7 @@ static const float conv3_kernel[] = { | |||||||
|     0.012931146f,     0.0046948805f,    0.013098622f,     -0.015422701f |     0.012931146f,     0.0046948805f,    0.013098622f,     -0.015422701f | ||||||
| }; | }; | ||||||
|  |  | ||||||
| static const float conv3_biases[] = { | static const float srcnn_conv3_biases[] = { | ||||||
|     0.05037664f |     0.05037664f | ||||||
| }; | }; | ||||||
|  |  | ||||||
|   | |||||||
							
								
								
									
										354
									
								
								libavfilter/vf_sr.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										354
									
								
								libavfilter/vf_sr.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,354 @@ | |||||||
|  | /* | ||||||
|  |  * Copyright (c) 2018 Sergey Lavrushkin | ||||||
|  |  * | ||||||
|  |  * This file is part of FFmpeg. | ||||||
|  |  * | ||||||
|  |  * FFmpeg is free software; you can redistribute it and/or | ||||||
|  |  * modify it under the terms of the GNU Lesser General Public | ||||||
|  |  * License as published by the Free Software Foundation; either | ||||||
|  |  * version 2.1 of the License, or (at your option) any later version. | ||||||
|  |  * | ||||||
|  |  * FFmpeg is distributed in the hope that it will be useful, | ||||||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | ||||||
|  |  * Lesser General Public License for more details. | ||||||
|  |  * | ||||||
|  |  * You should have received a copy of the GNU Lesser General Public | ||||||
|  |  * License along with FFmpeg; if not, write to the Free Software | ||||||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||||||
|  |  */ | ||||||
|  |  | ||||||
|  | /** | ||||||
|  |  * @file | ||||||
|  |  * Filter implementing image super-resolution using deep convolutional networks. | ||||||
|  |  * https://arxiv.org/abs/1501.00092 | ||||||
|  |  * https://arxiv.org/abs/1609.05158 | ||||||
|  |  */ | ||||||
|  |  | ||||||
|  | #include "avfilter.h" | ||||||
|  | #include "formats.h" | ||||||
|  | #include "internal.h" | ||||||
|  | #include "libavutil/opt.h" | ||||||
|  | #include "libavformat/avio.h" | ||||||
|  | #include "libswscale/swscale.h" | ||||||
|  | #include "dnn_interface.h" | ||||||
|  |  | ||||||
|  | typedef enum {SRCNN, ESPCN} SRModel; | ||||||
|  |  | ||||||
|  | typedef struct SRContext { | ||||||
|  |     const AVClass *class; | ||||||
|  |  | ||||||
|  |     SRModel model_type; | ||||||
|  |     char* model_filename; | ||||||
|  |     DNNBackendType backend_type; | ||||||
|  |     DNNModule* dnn_module; | ||||||
|  |     DNNModel* model; | ||||||
|  |     DNNData input, output; | ||||||
|  |     int scale_factor; | ||||||
|  |     struct SwsContext* sws_context; | ||||||
|  |     int sws_slice_h; | ||||||
|  | } SRContext; | ||||||
|  |  | ||||||
|  | #define OFFSET(x) offsetof(SRContext, x) | ||||||
|  | #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM | ||||||
|  | static const AVOption sr_options[] = { | ||||||
|  |     { "model", "specifies what DNN model to use", OFFSET(model_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "model_type" }, | ||||||
|  |     { "srcnn", "Super-Resolution Convolutional Neural Network model (scale factor should be specified for custom SRCNN model)", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "model_type" }, | ||||||
|  |     { "espcn", "Efficient Sub-Pixel Convolutional Neural Network model", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "model_type" }, | ||||||
|  |     { "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, | ||||||
|  |     { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, | ||||||
|  | #if (CONFIG_LIBTENSORFLOW == 1) | ||||||
|  |     { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, | ||||||
|  | #endif | ||||||
|  |     {"scale_factor", "scale factor for SRCNN model", OFFSET(scale_factor), AV_OPT_TYPE_INT, { .i64 = 2 }, 2, 4, FLAGS}, | ||||||
|  |     { "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, | ||||||
|  |     { NULL } | ||||||
|  | }; | ||||||
|  |  | ||||||
|  | AVFILTER_DEFINE_CLASS(sr); | ||||||
|  |  | ||||||
|  | static av_cold int init(AVFilterContext* context) | ||||||
|  | { | ||||||
|  |     SRContext* sr_context = context->priv; | ||||||
|  |  | ||||||
|  |     sr_context->dnn_module = ff_get_dnn_module(sr_context->backend_type); | ||||||
|  |     if (!sr_context->dnn_module){ | ||||||
|  |         av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n"); | ||||||
|  |         return AVERROR(ENOMEM); | ||||||
|  |     } | ||||||
|  |     if (!sr_context->model_filename){ | ||||||
|  |         av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n"); | ||||||
|  |         sr_context->scale_factor = 2; | ||||||
|  |         switch (sr_context->model_type){ | ||||||
|  |         case SRCNN: | ||||||
|  |             sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_SRCNN); | ||||||
|  |             break; | ||||||
|  |         case ESPCN: | ||||||
|  |             sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_ESPCN); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  |     else{ | ||||||
|  |         sr_context->model = (sr_context->dnn_module->load_model)(sr_context->model_filename); | ||||||
|  |     } | ||||||
|  |     if (!sr_context->model){ | ||||||
|  |         av_log(context, AV_LOG_ERROR, "could not load DNN model\n"); | ||||||
|  |         return AVERROR(EIO); | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     return 0; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | static int query_formats(AVFilterContext* context) | ||||||
|  | { | ||||||
|  |     const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, | ||||||
|  |                                                 AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, | ||||||
|  |                                                 AV_PIX_FMT_NONE}; | ||||||
|  |     AVFilterFormats* formats_list; | ||||||
|  |  | ||||||
|  |     formats_list = ff_make_format_list(pixel_formats); | ||||||
|  |     if (!formats_list){ | ||||||
|  |         av_log(context, AV_LOG_ERROR, "could not create formats list\n"); | ||||||
|  |         return AVERROR(ENOMEM); | ||||||
|  |     } | ||||||
|  |     return ff_set_common_formats(context, formats_list); | ||||||
|  | } | ||||||
|  |  | ||||||
|  | static int config_props(AVFilterLink* inlink) | ||||||
|  | { | ||||||
|  |     AVFilterContext* context = inlink->dst; | ||||||
|  |     SRContext* sr_context = context->priv; | ||||||
|  |     AVFilterLink* outlink = context->outputs[0]; | ||||||
|  |     DNNReturnType result; | ||||||
|  |     int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w; | ||||||
|  |  | ||||||
|  |     switch (sr_context->model_type){ | ||||||
|  |     case SRCNN: | ||||||
|  |         sr_context->input.width = inlink->w * sr_context->scale_factor; | ||||||
|  |         sr_context->input.height = inlink->h * sr_context->scale_factor; | ||||||
|  |         break; | ||||||
|  |     case ESPCN: | ||||||
|  |         sr_context->input.width = inlink->w; | ||||||
|  |         sr_context->input.height = inlink->h; | ||||||
|  |     } | ||||||
|  |     sr_context->input.channels = 1; | ||||||
|  |  | ||||||
|  |     result = (sr_context->model->set_input_output)(sr_context->model->model, &sr_context->input, &sr_context->output); | ||||||
|  |     if (result != DNN_SUCCESS){ | ||||||
|  |         av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n"); | ||||||
|  |         return AVERROR(EIO); | ||||||
|  |     } | ||||||
|  |     else{ | ||||||
|  |         outlink->h = sr_context->output.height; | ||||||
|  |         outlink->w = sr_context->output.width; | ||||||
|  |         switch (sr_context->model_type){ | ||||||
|  |         case SRCNN: | ||||||
|  |             sr_context->sws_context = sws_getContext(inlink->w, inlink->h, inlink->format, | ||||||
|  |                                                      outlink->w, outlink->h, outlink->format, SWS_BICUBIC, NULL, NULL, NULL); | ||||||
|  |             if (!sr_context->sws_context){ | ||||||
|  |                 av_log(context, AV_LOG_ERROR, "could not create SwsContext\n"); | ||||||
|  |                 return AVERROR(ENOMEM); | ||||||
|  |             } | ||||||
|  |             sr_context->sws_slice_h = inlink->h; | ||||||
|  |             break; | ||||||
|  |         case ESPCN: | ||||||
|  |             if (inlink->format == AV_PIX_FMT_GRAY8){ | ||||||
|  |                 sr_context->sws_context = NULL; | ||||||
|  |             } | ||||||
|  |             else{ | ||||||
|  |                 sws_src_h = sr_context->input.height; | ||||||
|  |                 sws_src_w = sr_context->input.width; | ||||||
|  |                 sws_dst_h = sr_context->output.height; | ||||||
|  |                 sws_dst_w = sr_context->output.width; | ||||||
|  |  | ||||||
|  |                 switch (inlink->format){ | ||||||
|  |                 case AV_PIX_FMT_YUV420P: | ||||||
|  |                     sws_src_h = (sws_src_h >> 1) + (sws_src_h % 2 != 0 ? 1 : 0); | ||||||
|  |                     sws_src_w = (sws_src_w >> 1) + (sws_src_w % 2 != 0 ? 1 : 0); | ||||||
|  |                     sws_dst_h = (sws_dst_h >> 1) + (sws_dst_h % 2 != 0 ? 1 : 0); | ||||||
|  |                     sws_dst_w = (sws_dst_w >> 1) + (sws_dst_w % 2 != 0 ? 1 : 0); | ||||||
|  |                     break; | ||||||
|  |                 case AV_PIX_FMT_YUV422P: | ||||||
|  |                     sws_src_w = (sws_src_w >> 1) + (sws_src_w % 2 != 0 ? 1 : 0); | ||||||
|  |                     sws_dst_w = (sws_dst_w >> 1) + (sws_dst_w % 2 != 0 ? 1 : 0); | ||||||
|  |                     break; | ||||||
|  |                 case AV_PIX_FMT_YUV444P: | ||||||
|  |                     break; | ||||||
|  |                 case AV_PIX_FMT_YUV410P: | ||||||
|  |                     sws_src_h = (sws_src_h >> 2) + (sws_src_h % 4 != 0 ? 1 : 0); | ||||||
|  |                     sws_src_w = (sws_src_w >> 2) + (sws_src_w % 4 != 0 ? 1 : 0); | ||||||
|  |                     sws_dst_h = (sws_dst_h >> 2) + (sws_dst_h % 4 != 0 ? 1 : 0); | ||||||
|  |                     sws_dst_w = (sws_dst_w >> 2) + (sws_dst_w % 4 != 0 ? 1 : 0); | ||||||
|  |                     break; | ||||||
|  |                 case AV_PIX_FMT_YUV411P: | ||||||
|  |                     sws_src_w = (sws_src_w >> 2) + (sws_src_w % 4 != 0 ? 1 : 0); | ||||||
|  |                     sws_dst_w = (sws_dst_w >> 2) + (sws_dst_w % 4 != 0 ? 1 : 0); | ||||||
|  |                     break; | ||||||
|  |                 default: | ||||||
|  |                     av_log(context, AV_LOG_ERROR, "could not create SwsContext for input pixel format"); | ||||||
|  |                     return AVERROR(EIO); | ||||||
|  |                 } | ||||||
|  |                 sr_context->sws_context = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8, | ||||||
|  |                                                          sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8, SWS_BICUBIC, NULL, NULL, NULL); | ||||||
|  |                 if (!sr_context->sws_context){ | ||||||
|  |                     av_log(context, AV_LOG_ERROR, "could not create SwsContext\n"); | ||||||
|  |                     return AVERROR(ENOMEM); | ||||||
|  |                 } | ||||||
|  |                 sr_context->sws_slice_h = sws_src_h; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |  | ||||||
|  |         return 0; | ||||||
|  |     } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | typedef struct ThreadData{ | ||||||
|  |     uint8_t* data; | ||||||
|  |     int data_linesize, height, width; | ||||||
|  | } ThreadData; | ||||||
|  |  | ||||||
|  | static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | ||||||
|  | { | ||||||
|  |     SRContext* sr_context = context->priv; | ||||||
|  |     const ThreadData* td = arg; | ||||||
|  |     const int slice_start = (td->height *  jobnr     ) / nb_jobs; | ||||||
|  |     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs; | ||||||
|  |     const uint8_t* src = td->data + slice_start * td->data_linesize; | ||||||
|  |     float* dst = sr_context->input.data + slice_start * td->width; | ||||||
|  |     int y, x; | ||||||
|  |  | ||||||
|  |     for (y = slice_start; y < slice_end; ++y){ | ||||||
|  |         for (x = 0; x < td->width; ++x){ | ||||||
|  |             dst[x] = (float)src[x] / 255.0f; | ||||||
|  |         } | ||||||
|  |         src += td->data_linesize; | ||||||
|  |         dst += td->width; | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     return 0; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | ||||||
|  | { | ||||||
|  |     SRContext* sr_context = context->priv; | ||||||
|  |     const ThreadData* td = arg; | ||||||
|  |     const int slice_start = (td->height *  jobnr     ) / nb_jobs; | ||||||
|  |     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs; | ||||||
|  |     const float* src = sr_context->output.data + slice_start * td->width; | ||||||
|  |     uint8_t* dst = td->data + slice_start * td->data_linesize; | ||||||
|  |     int y, x; | ||||||
|  |  | ||||||
|  |     for (y = slice_start; y < slice_end; ++y){ | ||||||
|  |         for (x = 0; x < td->width; ++x){ | ||||||
|  |             dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f)); | ||||||
|  |         } | ||||||
|  |         src += td->width; | ||||||
|  |         dst += td->data_linesize; | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     return 0; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | static int filter_frame(AVFilterLink* inlink, AVFrame* in) | ||||||
|  | { | ||||||
|  |     AVFilterContext* context = inlink->dst; | ||||||
|  |     SRContext* sr_context = context->priv; | ||||||
|  |     AVFilterLink* outlink = context->outputs[0]; | ||||||
|  |     AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h); | ||||||
|  |     ThreadData td; | ||||||
|  |     int nb_threads; | ||||||
|  |     DNNReturnType dnn_result; | ||||||
|  |  | ||||||
|  |     if (!out){ | ||||||
|  |         av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n"); | ||||||
|  |         av_frame_free(&in); | ||||||
|  |         return AVERROR(ENOMEM); | ||||||
|  |     } | ||||||
|  |     av_frame_copy_props(out, in); | ||||||
|  |     out->height = sr_context->output.height; | ||||||
|  |     out->width = sr_context->output.width; | ||||||
|  |     switch (sr_context->model_type){ | ||||||
|  |     case SRCNN: | ||||||
|  |         sws_scale(sr_context->sws_context, in->data, in->linesize, | ||||||
|  |                   0, sr_context->sws_slice_h, out->data, out->linesize); | ||||||
|  |         td.data = out->data[0]; | ||||||
|  |         td.data_linesize = out->linesize[0]; | ||||||
|  |         td.height = out->height; | ||||||
|  |         td.width = out->width; | ||||||
|  |         break; | ||||||
|  |     case ESPCN: | ||||||
|  |         if (sr_context->sws_context){ | ||||||
|  |             sws_scale(sr_context->sws_context, in->data + 1, in->linesize + 1, | ||||||
|  |                       0, sr_context->sws_slice_h, out->data + 1, out->linesize + 1); | ||||||
|  |             sws_scale(sr_context->sws_context, in->data + 2, in->linesize + 2, | ||||||
|  |                       0, sr_context->sws_slice_h, out->data + 2, out->linesize + 2); | ||||||
|  |         } | ||||||
|  |         td.data = in->data[0]; | ||||||
|  |         td.data_linesize = in->linesize[0]; | ||||||
|  |         td.height = in->height; | ||||||
|  |         td.width = in->width; | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     nb_threads = ff_filter_get_nb_threads(context); | ||||||
|  |     context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads)); | ||||||
|  |     av_frame_free(&in); | ||||||
|  |  | ||||||
|  |     dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model); | ||||||
|  |     if (dnn_result != DNN_SUCCESS){ | ||||||
|  |         av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); | ||||||
|  |         return AVERROR(EIO); | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     td.data = out->data[0]; | ||||||
|  |     td.data_linesize = out->linesize[0]; | ||||||
|  |     td.height = out->height; | ||||||
|  |     td.width = out->width; | ||||||
|  |     context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads)); | ||||||
|  |  | ||||||
|  |     return ff_filter_frame(outlink, out); | ||||||
|  | } | ||||||
|  |  | ||||||
|  | static av_cold void uninit(AVFilterContext* context) | ||||||
|  | { | ||||||
|  |     SRContext* sr_context = context->priv; | ||||||
|  |  | ||||||
|  |     if (sr_context->dnn_module){ | ||||||
|  |         (sr_context->dnn_module->free_model)(&sr_context->model); | ||||||
|  |         av_freep(&sr_context->dnn_module); | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     if (sr_context->sws_context){ | ||||||
|  |         sws_freeContext(sr_context->sws_context); | ||||||
|  |     } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | static const AVFilterPad sr_inputs[] = { | ||||||
|  |     { | ||||||
|  |         .name         = "default", | ||||||
|  |         .type         = AVMEDIA_TYPE_VIDEO, | ||||||
|  |         .config_props = config_props, | ||||||
|  |         .filter_frame = filter_frame, | ||||||
|  |     }, | ||||||
|  |     { NULL } | ||||||
|  | }; | ||||||
|  |  | ||||||
|  | static const AVFilterPad sr_outputs[] = { | ||||||
|  |     { | ||||||
|  |         .name = "default", | ||||||
|  |         .type = AVMEDIA_TYPE_VIDEO, | ||||||
|  |     }, | ||||||
|  |     { NULL } | ||||||
|  | }; | ||||||
|  |  | ||||||
|  | AVFilter ff_vf_sr = { | ||||||
|  |     .name          = "sr", | ||||||
|  |     .description   = NULL_IF_CONFIG_SMALL("Apply DNN-based image super resolution to the input."), | ||||||
|  |     .priv_size     = sizeof(SRContext), | ||||||
|  |     .init          = init, | ||||||
|  |     .uninit        = uninit, | ||||||
|  |     .query_formats = query_formats, | ||||||
|  |     .inputs        = sr_inputs, | ||||||
|  |     .outputs       = sr_outputs, | ||||||
|  |     .priv_class    = &sr_class, | ||||||
|  |     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, | ||||||
|  | }; | ||||||
|  |  | ||||||
| @@ -1,250 +0,0 @@ | |||||||
| /* |  | ||||||
|  * Copyright (c) 2018 Sergey Lavrushkin |  | ||||||
|  * |  | ||||||
|  * This file is part of FFmpeg. |  | ||||||
|  * |  | ||||||
|  * FFmpeg is free software; you can redistribute it and/or |  | ||||||
|  * modify it under the terms of the GNU Lesser General Public |  | ||||||
|  * License as published by the Free Software Foundation; either |  | ||||||
|  * version 2.1 of the License, or (at your option) any later version. |  | ||||||
|  * |  | ||||||
|  * FFmpeg is distributed in the hope that it will be useful, |  | ||||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of |  | ||||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU |  | ||||||
|  * Lesser General Public License for more details. |  | ||||||
|  * |  | ||||||
|  * You should have received a copy of the GNU Lesser General Public |  | ||||||
|  * License along with FFmpeg; if not, write to the Free Software |  | ||||||
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |  | ||||||
|  */ |  | ||||||
|  |  | ||||||
| /** |  | ||||||
|  * @file |  | ||||||
|  * Filter implementing image super-resolution using deep convolutional networks. |  | ||||||
|  * https://arxiv.org/abs/1501.00092 |  | ||||||
|  */ |  | ||||||
|  |  | ||||||
| #include "avfilter.h" |  | ||||||
| #include "formats.h" |  | ||||||
| #include "internal.h" |  | ||||||
| #include "libavutil/opt.h" |  | ||||||
| #include "libavformat/avio.h" |  | ||||||
| #include "dnn_interface.h" |  | ||||||
|  |  | ||||||
| typedef struct SRCNNContext { |  | ||||||
|     const AVClass *class; |  | ||||||
|  |  | ||||||
|     char* model_filename; |  | ||||||
|     float* input_output_buf; |  | ||||||
|     DNNBackendType backend_type; |  | ||||||
|     DNNModule* dnn_module; |  | ||||||
|     DNNModel* model; |  | ||||||
|     DNNData input_output; |  | ||||||
| } SRCNNContext; |  | ||||||
|  |  | ||||||
| #define OFFSET(x) offsetof(SRCNNContext, x) |  | ||||||
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM |  | ||||||
| static const AVOption srcnn_options[] = { |  | ||||||
|     { "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, |  | ||||||
|     { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, |  | ||||||
| #if (CONFIG_LIBTENSORFLOW == 1) |  | ||||||
|     { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, |  | ||||||
| #endif |  | ||||||
|     { "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, |  | ||||||
|     { NULL } |  | ||||||
| }; |  | ||||||
|  |  | ||||||
| AVFILTER_DEFINE_CLASS(srcnn); |  | ||||||
|  |  | ||||||
| static av_cold int init(AVFilterContext* context) |  | ||||||
| { |  | ||||||
|     SRCNNContext* srcnn_context = context->priv; |  | ||||||
|  |  | ||||||
|     srcnn_context->dnn_module = ff_get_dnn_module(srcnn_context->backend_type); |  | ||||||
|     if (!srcnn_context->dnn_module){ |  | ||||||
|         av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n"); |  | ||||||
|         return AVERROR(ENOMEM); |  | ||||||
|     } |  | ||||||
|     if (!srcnn_context->model_filename){ |  | ||||||
|         av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n"); |  | ||||||
|         srcnn_context->model = (srcnn_context->dnn_module->load_default_model)(DNN_SRCNN); |  | ||||||
|     } |  | ||||||
|     else{ |  | ||||||
|         srcnn_context->model = (srcnn_context->dnn_module->load_model)(srcnn_context->model_filename); |  | ||||||
|     } |  | ||||||
|     if (!srcnn_context->model){ |  | ||||||
|         av_log(context, AV_LOG_ERROR, "could not load DNN model\n"); |  | ||||||
|         return AVERROR(EIO); |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     return 0; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| static int query_formats(AVFilterContext* context) |  | ||||||
| { |  | ||||||
|     const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, |  | ||||||
|                                                 AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, |  | ||||||
|                                                 AV_PIX_FMT_NONE}; |  | ||||||
|     AVFilterFormats* formats_list; |  | ||||||
|  |  | ||||||
|     formats_list = ff_make_format_list(pixel_formats); |  | ||||||
|     if (!formats_list){ |  | ||||||
|         av_log(context, AV_LOG_ERROR, "could not create formats list\n"); |  | ||||||
|         return AVERROR(ENOMEM); |  | ||||||
|     } |  | ||||||
|     return ff_set_common_formats(context, formats_list); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| static int config_props(AVFilterLink* inlink) |  | ||||||
| { |  | ||||||
|     AVFilterContext* context = inlink->dst; |  | ||||||
|     SRCNNContext* srcnn_context = context->priv; |  | ||||||
|     DNNReturnType result; |  | ||||||
|  |  | ||||||
|     srcnn_context->input_output_buf = av_malloc(inlink->h * inlink->w * sizeof(float)); |  | ||||||
|     if (!srcnn_context->input_output_buf){ |  | ||||||
|         av_log(context, AV_LOG_ERROR, "could not allocate memory for input/output buffer\n"); |  | ||||||
|         return AVERROR(ENOMEM); |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     srcnn_context->input_output.data = srcnn_context->input_output_buf; |  | ||||||
|     srcnn_context->input_output.width = inlink->w; |  | ||||||
|     srcnn_context->input_output.height = inlink->h; |  | ||||||
|     srcnn_context->input_output.channels = 1; |  | ||||||
|  |  | ||||||
|     result = (srcnn_context->model->set_input_output)(srcnn_context->model->model, &srcnn_context->input_output, &srcnn_context->input_output); |  | ||||||
|     if (result != DNN_SUCCESS){ |  | ||||||
|         av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n"); |  | ||||||
|         return AVERROR(EIO); |  | ||||||
|     } |  | ||||||
|     else{ |  | ||||||
|         return 0; |  | ||||||
|     } |  | ||||||
| } |  | ||||||
|  |  | ||||||
| typedef struct ThreadData{ |  | ||||||
|     uint8_t* out; |  | ||||||
|     int out_linesize, height, width; |  | ||||||
| } ThreadData; |  | ||||||
|  |  | ||||||
| static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) |  | ||||||
| { |  | ||||||
|     SRCNNContext* srcnn_context = context->priv; |  | ||||||
|     const ThreadData* td = arg; |  | ||||||
|     const int slice_start = (td->height *  jobnr     ) / nb_jobs; |  | ||||||
|     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs; |  | ||||||
|     const uint8_t* src = td->out + slice_start * td->out_linesize; |  | ||||||
|     float* dst = srcnn_context->input_output_buf + slice_start * td->width; |  | ||||||
|     int y, x; |  | ||||||
|  |  | ||||||
|     for (y = slice_start; y < slice_end; ++y){ |  | ||||||
|         for (x = 0; x < td->width; ++x){ |  | ||||||
|             dst[x] = (float)src[x] / 255.0f; |  | ||||||
|         } |  | ||||||
|         src += td->out_linesize; |  | ||||||
|         dst += td->width; |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     return 0; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) |  | ||||||
| { |  | ||||||
|     SRCNNContext* srcnn_context = context->priv; |  | ||||||
|     const ThreadData* td = arg; |  | ||||||
|     const int slice_start = (td->height *  jobnr     ) / nb_jobs; |  | ||||||
|     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs; |  | ||||||
|     const float* src = srcnn_context->input_output_buf + slice_start * td->width; |  | ||||||
|     uint8_t* dst = td->out + slice_start * td->out_linesize; |  | ||||||
|     int y, x; |  | ||||||
|  |  | ||||||
|     for (y = slice_start; y < slice_end; ++y){ |  | ||||||
|         for (x = 0; x < td->width; ++x){ |  | ||||||
|             dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f)); |  | ||||||
|         } |  | ||||||
|         src += td->width; |  | ||||||
|         dst += td->out_linesize; |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     return 0; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| static int filter_frame(AVFilterLink* inlink, AVFrame* in) |  | ||||||
| { |  | ||||||
|     AVFilterContext* context = inlink->dst; |  | ||||||
|     SRCNNContext* srcnn_context = context->priv; |  | ||||||
|     AVFilterLink* outlink = context->outputs[0]; |  | ||||||
|     AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |  | ||||||
|     ThreadData td; |  | ||||||
|     int nb_threads; |  | ||||||
|     DNNReturnType dnn_result; |  | ||||||
|  |  | ||||||
|     if (!out){ |  | ||||||
|         av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n"); |  | ||||||
|         av_frame_free(&in); |  | ||||||
|         return AVERROR(ENOMEM); |  | ||||||
|     } |  | ||||||
|     av_frame_copy_props(out, in); |  | ||||||
|     av_frame_copy(out, in); |  | ||||||
|     av_frame_free(&in); |  | ||||||
|     td.out = out->data[0]; |  | ||||||
|     td.out_linesize = out->linesize[0]; |  | ||||||
|     td.height = out->height; |  | ||||||
|     td.width = out->width; |  | ||||||
|  |  | ||||||
|     nb_threads = ff_filter_get_nb_threads(context); |  | ||||||
|     context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads)); |  | ||||||
|  |  | ||||||
|     dnn_result = (srcnn_context->dnn_module->execute_model)(srcnn_context->model); |  | ||||||
|     if (dnn_result != DNN_SUCCESS){ |  | ||||||
|         av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); |  | ||||||
|         return AVERROR(EIO); |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads)); |  | ||||||
|  |  | ||||||
|     return ff_filter_frame(outlink, out); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| static av_cold void uninit(AVFilterContext* context) |  | ||||||
| { |  | ||||||
|     SRCNNContext* srcnn_context = context->priv; |  | ||||||
|  |  | ||||||
|     if (srcnn_context->dnn_module){ |  | ||||||
|         (srcnn_context->dnn_module->free_model)(&srcnn_context->model); |  | ||||||
|         av_freep(&srcnn_context->dnn_module); |  | ||||||
|     } |  | ||||||
|     av_freep(&srcnn_context->input_output_buf); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| static const AVFilterPad srcnn_inputs[] = { |  | ||||||
|     { |  | ||||||
|         .name         = "default", |  | ||||||
|         .type         = AVMEDIA_TYPE_VIDEO, |  | ||||||
|         .config_props = config_props, |  | ||||||
|         .filter_frame = filter_frame, |  | ||||||
|     }, |  | ||||||
|     { NULL } |  | ||||||
| }; |  | ||||||
|  |  | ||||||
| static const AVFilterPad srcnn_outputs[] = { |  | ||||||
|     { |  | ||||||
|         .name = "default", |  | ||||||
|         .type = AVMEDIA_TYPE_VIDEO, |  | ||||||
|     }, |  | ||||||
|     { NULL } |  | ||||||
| }; |  | ||||||
|  |  | ||||||
| AVFilter ff_vf_srcnn = { |  | ||||||
|     .name          = "srcnn", |  | ||||||
|     .description   = NULL_IF_CONFIG_SMALL("Apply super resolution convolutional neural network to the input. Use bicubic upsamping with corresponding scaling factor before."), |  | ||||||
|     .priv_size     = sizeof(SRCNNContext), |  | ||||||
|     .init          = init, |  | ||||||
|     .uninit        = uninit, |  | ||||||
|     .query_formats = query_formats, |  | ||||||
|     .inputs        = srcnn_inputs, |  | ||||||
|     .outputs       = srcnn_outputs, |  | ||||||
|     .priv_class    = &srcnn_class, |  | ||||||
|     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, |  | ||||||
| }; |  | ||||||
|  |  | ||||||
		Reference in New Issue
	
	Block a user