mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-11-01 04:53:04 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			251 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018 Sergey Lavrushkin
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Filter implementing image super-resolution using deep convolutional networks.
 | |
|  * https://arxiv.org/abs/1501.00092
 | |
|  */
 | |
| 
 | |
| #include "avfilter.h"
 | |
| #include "formats.h"
 | |
| #include "internal.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavformat/avio.h"
 | |
| #include "dnn_interface.h"
 | |
| 
 | |
| typedef struct SRCNNContext {
 | |
|     const AVClass *class;
 | |
| 
 | |
|     char* model_filename;
 | |
|     float* input_output_buf;
 | |
|     DNNBackendType backend_type;
 | |
|     DNNModule* dnn_module;
 | |
|     DNNModel* model;
 | |
|     DNNData input_output;
 | |
| } SRCNNContext;
 | |
| 
 | |
| #define OFFSET(x) offsetof(SRCNNContext, x)
 | |
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
 | |
| static const AVOption srcnn_options[] = {
 | |
|     { "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" },
 | |
|     { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
 | |
| #if (CONFIG_LIBTENSORFLOW == 1)
 | |
|     { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
 | |
| #endif
 | |
|     { "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(srcnn);
 | |
| 
 | |
| static av_cold int init(AVFilterContext* context)
 | |
| {
 | |
|     SRCNNContext* srcnn_context = context->priv;
 | |
| 
 | |
|     srcnn_context->dnn_module = ff_get_dnn_module(srcnn_context->backend_type);
 | |
|     if (!srcnn_context->dnn_module){
 | |
|         av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
|     if (!srcnn_context->model_filename){
 | |
|         av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n");
 | |
|         srcnn_context->model = (srcnn_context->dnn_module->load_default_model)(DNN_SRCNN);
 | |
|     }
 | |
|     else{
 | |
|         srcnn_context->model = (srcnn_context->dnn_module->load_model)(srcnn_context->model_filename);
 | |
|     }
 | |
|     if (!srcnn_context->model){
 | |
|         av_log(context, AV_LOG_ERROR, "could not load DNN model\n");
 | |
|         return AVERROR(EIO);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int query_formats(AVFilterContext* context)
 | |
| {
 | |
|     const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
 | |
|                                                 AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
 | |
|                                                 AV_PIX_FMT_NONE};
 | |
|     AVFilterFormats* formats_list;
 | |
| 
 | |
|     formats_list = ff_make_format_list(pixel_formats);
 | |
|     if (!formats_list){
 | |
|         av_log(context, AV_LOG_ERROR, "could not create formats list\n");
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
|     return ff_set_common_formats(context, formats_list);
 | |
| }
 | |
| 
 | |
| static int config_props(AVFilterLink* inlink)
 | |
| {
 | |
|     AVFilterContext* context = inlink->dst;
 | |
|     SRCNNContext* srcnn_context = context->priv;
 | |
|     DNNReturnType result;
 | |
| 
 | |
|     srcnn_context->input_output_buf = av_malloc(inlink->h * inlink->w * sizeof(float));
 | |
|     if (!srcnn_context->input_output_buf){
 | |
|         av_log(context, AV_LOG_ERROR, "could not allocate memory for input/output buffer\n");
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     srcnn_context->input_output.data = srcnn_context->input_output_buf;
 | |
|     srcnn_context->input_output.width = inlink->w;
 | |
|     srcnn_context->input_output.height = inlink->h;
 | |
|     srcnn_context->input_output.channels = 1;
 | |
| 
 | |
|     result = (srcnn_context->model->set_input_output)(srcnn_context->model->model, &srcnn_context->input_output, &srcnn_context->input_output);
 | |
|     if (result != DNN_SUCCESS){
 | |
|         av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
 | |
|         return AVERROR(EIO);
 | |
|     }
 | |
|     else{
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct ThreadData{
 | |
|     uint8_t* out;
 | |
|     int out_linesize, height, width;
 | |
| } ThreadData;
 | |
| 
 | |
| static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
 | |
| {
 | |
|     SRCNNContext* srcnn_context = context->priv;
 | |
|     const ThreadData* td = arg;
 | |
|     const int slice_start = (td->height *  jobnr     ) / nb_jobs;
 | |
|     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs;
 | |
|     const uint8_t* src = td->out + slice_start * td->out_linesize;
 | |
|     float* dst = srcnn_context->input_output_buf + slice_start * td->width;
 | |
|     int y, x;
 | |
| 
 | |
|     for (y = slice_start; y < slice_end; ++y){
 | |
|         for (x = 0; x < td->width; ++x){
 | |
|             dst[x] = (float)src[x] / 255.0f;
 | |
|         }
 | |
|         src += td->out_linesize;
 | |
|         dst += td->width;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
 | |
| {
 | |
|     SRCNNContext* srcnn_context = context->priv;
 | |
|     const ThreadData* td = arg;
 | |
|     const int slice_start = (td->height *  jobnr     ) / nb_jobs;
 | |
|     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs;
 | |
|     const float* src = srcnn_context->input_output_buf + slice_start * td->width;
 | |
|     uint8_t* dst = td->out + slice_start * td->out_linesize;
 | |
|     int y, x;
 | |
| 
 | |
|     for (y = slice_start; y < slice_end; ++y){
 | |
|         for (x = 0; x < td->width; ++x){
 | |
|             dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f));
 | |
|         }
 | |
|         src += td->width;
 | |
|         dst += td->out_linesize;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink* inlink, AVFrame* in)
 | |
| {
 | |
|     AVFilterContext* context = inlink->dst;
 | |
|     SRCNNContext* srcnn_context = context->priv;
 | |
|     AVFilterLink* outlink = context->outputs[0];
 | |
|     AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
 | |
|     ThreadData td;
 | |
|     int nb_threads;
 | |
|     DNNReturnType dnn_result;
 | |
| 
 | |
|     if (!out){
 | |
|         av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n");
 | |
|         av_frame_free(&in);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
|     av_frame_copy_props(out, in);
 | |
|     av_frame_copy(out, in);
 | |
|     av_frame_free(&in);
 | |
|     td.out = out->data[0];
 | |
|     td.out_linesize = out->linesize[0];
 | |
|     td.height = out->height;
 | |
|     td.width = out->width;
 | |
| 
 | |
|     nb_threads = ff_filter_get_nb_threads(context);
 | |
|     context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads));
 | |
| 
 | |
|     dnn_result = (srcnn_context->dnn_module->execute_model)(srcnn_context->model);
 | |
|     if (dnn_result != DNN_SUCCESS){
 | |
|         av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
 | |
|         return AVERROR(EIO);
 | |
|     }
 | |
| 
 | |
|     context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads));
 | |
| 
 | |
|     return ff_filter_frame(outlink, out);
 | |
| }
 | |
| 
 | |
| static av_cold void uninit(AVFilterContext* context)
 | |
| {
 | |
|     SRCNNContext* srcnn_context = context->priv;
 | |
| 
 | |
|     if (srcnn_context->dnn_module){
 | |
|         (srcnn_context->dnn_module->free_model)(&srcnn_context->model);
 | |
|         av_freep(&srcnn_context->dnn_module);
 | |
|     }
 | |
|     av_freep(&srcnn_context->input_output_buf);
 | |
| }
 | |
| 
 | |
| static const AVFilterPad srcnn_inputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_VIDEO,
 | |
|         .config_props = config_props,
 | |
|         .filter_frame = filter_frame,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| static const AVFilterPad srcnn_outputs[] = {
 | |
|     {
 | |
|         .name = "default",
 | |
|         .type = AVMEDIA_TYPE_VIDEO,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFilter ff_vf_srcnn = {
 | |
|     .name          = "srcnn",
 | |
|     .description   = NULL_IF_CONFIG_SMALL("Apply super resolution convolutional neural network to the input. Use bicubic upsamping with corresponding scaling factor before."),
 | |
|     .priv_size     = sizeof(SRCNNContext),
 | |
|     .init          = init,
 | |
|     .uninit        = uninit,
 | |
|     .query_formats = query_formats,
 | |
|     .inputs        = srcnn_inputs,
 | |
|     .outputs       = srcnn_outputs,
 | |
|     .priv_class    = &srcnn_class,
 | |
|     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
 | |
| };
 | |
| 
 | 
