feat: added yoloface

This commit is contained in:
kweijack
2024-07-03 13:13:00 +00:00
parent 5d6050f78e
commit 4e245c8fad
8 changed files with 328 additions and 0 deletions

1
go.mod
View File

@@ -3,6 +3,7 @@ module github.com/dev6699/face
go 1.22.4
require (
gocv.io/x/gocv v0.37.0
google.golang.org/grpc v1.64.0
google.golang.org/protobuf v1.34.2
)

2
go.sum
View File

@@ -1,5 +1,7 @@
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
gocv.io/x/gocv v0.37.0 h1:sISHvnApErjoJodz1Dxb8UAkFdITOB3vXGslbVu6Knk=
gocv.io/x/gocv v0.37.0/go.mod h1:lmS802zoQmnNvXETpmGriBqWrENPei2GxYx5KUxJsMA=
golang.org/x/net v0.22.0 h1:9sGLhx7iRIHEiX0oAJ3MRZMUCElJgy7Br1nO+AMN3Tc=
golang.org/x/net v0.22.0/go.mod h1:JKghWKKOSdJwpW2GEx0Ja7fmaKnMsbu+MWVZTokSYmg=
golang.org/x/sys v0.18.0 h1:DBdB3niSjOA/O0blCZBqDefyWNYveAYMNF1Wum0DYQ4=

41
model/yoloface/README.md Normal file
View File

@@ -0,0 +1,41 @@
## Yoloface with face landmark5 detection
<img src="output.jpg">
---
Model description
[Get model](https://github.com/facefusion/facefusion-assets/releases/download/models/yoloface_8n.onnx)
```
{
"name": "yoloface",
"versions": [
"1"
],
"platform": "onnxruntime_onnx",
"inputs": [
{
"name": "images",
"datatype": "FP32",
"shape": [
1,
3,
640,
640
]
}
],
"outputs": [
{
"name": "output0",
"datatype": "FP32",
"shape": [
1,
20,
8400
]
}
]
}
```

BIN
model/yoloface/output.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

155
model/yoloface/post.go Normal file
View File

@@ -0,0 +1,155 @@
package yoloface
import (
"math"
"sort"
"github.com/dev6699/face/model"
"gocv.io/x/gocv"
)
type Detection struct {
BoundingBox model.BoundingBox
FaceLandmark5 []gocv.Point2f
Confidence float32
}
func (m *Model) PostProcess(rawOutputContents [][]byte) (*Output, error) {
// outputs": [
// {
// "name": "output0",
// "datatype": "FP32",
// "shape": [
// 1,
// 20,
// 8400
// ]
// }
// ]
outputCount := 8400
rawDetections, err := model.BytesToFloat32Slice(rawOutputContents[0])
if err != nil {
return nil, err
}
ratioWidth := m.ratioWidth
ratioHeight := m.ratioHeight
var detections []Detection
boundingBoxRaw := rawDetections[:4*outputCount]
scoreRaw := rawDetections[4*outputCount : 5*outputCount]
faceLandmark5Raw := rawDetections[5*outputCount:]
for i := 0; i < outputCount; i++ {
score := scoreRaw[i]
if score < m.faceDetectorScore {
continue
}
d := Detection{
Confidence: score,
}
bboxRaw := []float32{
boundingBoxRaw[i],
boundingBoxRaw[i+outputCount],
boundingBoxRaw[i+outputCount*2],
boundingBoxRaw[i+outputCount*3],
}
d.BoundingBox = model.BoundingBox{
X1: float64(bboxRaw[0]-bboxRaw[2]/2) * float64(ratioWidth),
Y1: float64(bboxRaw[1]-bboxRaw[3]/2) * float64(ratioHeight),
X2: float64(bboxRaw[0]+bboxRaw[2]/2) * float64(ratioWidth),
Y2: float64(bboxRaw[1]+bboxRaw[3]/2) * float64(ratioHeight),
}
faceLandmark5Extract := []float32{}
for j := 0; j < 15; j++ {
if (j-2)%3 == 0 {
continue
}
idx := j*outputCount + i
fl := faceLandmark5Raw[idx]
if j%3 == 0 {
fl *= ratioWidth
}
if (j-1)%3 == 0 {
fl *= ratioHeight
}
faceLandmark5Extract = append(faceLandmark5Extract, fl)
}
faceLandmark5 := []gocv.Point2f{}
for j := 0; j < len(faceLandmark5Extract); j += 2 {
faceLandmark5 = append(faceLandmark5,
gocv.Point2f{
X: faceLandmark5Extract[j],
Y: faceLandmark5Extract[j+1],
})
}
d.FaceLandmark5 = faceLandmark5
detections = append(detections, d)
}
keepIndices := applyNMS(detections, m.iouThreshold)
keepDetections := make([]Detection, len(keepIndices))
for i, idx := range keepIndices {
keepDetections[i] = detections[idx]
}
sort.Slice(keepDetections, func(i, j int) bool {
return keepDetections[i].Confidence > keepDetections[j].Confidence
})
return &Output{
Detections: keepDetections,
}, nil
}
// applyNMS performs non-maximum suppression to eliminate duplicate detections.
func applyNMS(detections []Detection, iouThreshold float64) []int {
boundingBoxList := []model.BoundingBox{}
for _, d := range detections {
boundingBoxList = append(boundingBoxList, d.BoundingBox)
}
var keepIndices []int
indices := make([]int, len(boundingBoxList))
for i := range boundingBoxList {
indices[i] = i
}
areas := make([]float64, len(boundingBoxList))
for i, box := range boundingBoxList {
areas[i] = (box.X2 - box.X1 + 1) * (box.Y2 - box.Y1 + 1)
}
for len(indices) > 0 {
index := indices[0]
keepIndices = append(keepIndices, index)
var remainIndices []int
for _, i := range indices[1:] {
xx1 := math.Max(boundingBoxList[index].X1, boundingBoxList[i].X1)
yy1 := math.Max(boundingBoxList[index].Y1, boundingBoxList[i].Y1)
xx2 := math.Min(boundingBoxList[index].X2, boundingBoxList[i].X2)
yy2 := math.Min(boundingBoxList[index].Y2, boundingBoxList[i].Y2)
width := math.Max(0, xx2-xx1+1)
height := math.Max(0, yy2-yy1+1)
intersection := width * height
union := areas[index] + areas[i] - intersection
iou := intersection / union
if iou <= iouThreshold {
remainIndices = append(remainIndices, i)
}
}
indices = remainIndices
}
return keepIndices
}

81
model/yoloface/pre.go Normal file
View File

@@ -0,0 +1,81 @@
package yoloface
import (
"image"
"math"
"github.com/dev6699/face/protobuf"
"gocv.io/x/gocv"
)
func (m *Model) PreProcess(i *Input) ([]*protobuf.InferTensorContents, error) {
img := i.Img
width := img.Cols()
height := img.Rows()
faceDetectorSize := Resolution{Width: 640, Height: 640}
resizedVisionFrame, newWidth, newHeight := resizeFrameResolution(img.Clone(), faceDetectorSize)
defer resizedVisionFrame.Close()
ratioHeight := float32(height) / float32(newHeight)
ratioWidth := float32(width) / float32(newWidth)
m.ratioHeight = ratioHeight
m.ratioWidth = ratioWidth
contents := &protobuf.InferTensorContents{
Fp32Contents: prepareDetectFrame(resizedVisionFrame, faceDetectorSize),
}
return []*protobuf.InferTensorContents{contents}, nil
}
type Resolution struct {
Width uint
Height uint
}
// resizeFrameResolution resize visionFrame where its resolution will be capped at maxResolution.
func resizeFrameResolution(visionFrame gocv.Mat, maxResolution Resolution) (gocv.Mat, uint, uint) {
width := visionFrame.Cols()
height := visionFrame.Rows()
maxHeight := int(maxResolution.Height)
maxWidth := int(maxResolution.Width)
if height > maxHeight || width > maxWidth {
scale := math.Min(float64(maxHeight)/float64(height), float64(maxWidth)/float64(width))
newWidth := int(float64(width) * scale)
newHeight := int(float64(height) * scale)
gocv.Resize(visionFrame, &visionFrame, image.Point{X: newWidth, Y: newHeight}, 0, 0, gocv.InterpolationDefault)
return visionFrame, uint(newWidth), uint(newHeight)
}
return visionFrame, uint(width), uint(height)
}
func prepareDetectFrame(visionFrame gocv.Mat, faceDetectorSize Resolution) []float32 {
faceDetectorWidth := int(faceDetectorSize.Width)
faceDetectorHeight := int(faceDetectorSize.Height)
detectVisionFrame := gocv.NewMatWithSize(faceDetectorHeight, faceDetectorWidth, gocv.MatTypeCV8UC3)
defer detectVisionFrame.Close()
roi := detectVisionFrame.Region(image.Rect(0, 0, visionFrame.Cols(), visionFrame.Rows()))
defer roi.Close()
visionFrame.CopyTo(&roi)
output := make([]float32, 3*faceDetectorHeight*faceDetectorWidth)
idx := 0
for y := 0; y < faceDetectorHeight; y++ {
for x := 0; x < faceDetectorWidth; x++ {
pixel := detectVisionFrame.GetVecbAt(y, x)
output[idx] = (float32(pixel[0]) - 127.5) / 128.0
output[faceDetectorHeight*faceDetectorWidth+idx] = (float32(pixel[1]) - 127.5) / 128.0
output[2*faceDetectorHeight*faceDetectorWidth+idx] = (float32(pixel[2]) - 127.5) / 128.0
idx++
}
}
return output
}

View File

@@ -0,0 +1,46 @@
package yoloface
import (
"github.com/dev6699/face/model"
"gocv.io/x/gocv"
)
type Model struct {
faceDetectorScore float32
iouThreshold float64
ratioHeight float32
ratioWidth float32
}
type Input struct {
Img gocv.Mat
}
type Output struct {
Detections []Detection
}
type ModelT = model.Model[*Input, *Output]
var _ ModelT = &Model{}
func NewFactory(faceDetectorScore float32, iouThreshold float64) func() ModelT {
return func() ModelT {
return New(faceDetectorScore, iouThreshold)
}
}
func New(faceDetectorScore float32, iouThreshold float64) *Model {
return &Model{
faceDetectorScore: faceDetectorScore,
iouThreshold: iouThreshold,
}
}
func (m *Model) ModelName() string {
return "yoloface"
}
func (m *Model) ModelVersion() string {
return "1"
}

View File

@@ -0,0 +1,2 @@
name: "yoloface"
platform: "onnxruntime_onnx"