mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* fit yolov7face file path * TODO:添加yolov7facePython接口Predict * resolve yolov7face.py * resolve yolov7face.py * resolve yolov7face.py * add yolov7face example readme file * [Doc] fix yolov7face example readme file * [Doc]fix yolov7face example readme file * support BlazeFace * add blazeface readme file * fix review problem * fix code style error * fix review problem * fix review problem * fix head file problem * fix review problem * fix review problem * fix readme file problem * add English readme file * fix English readme file
152 lines
5.7 KiB
Python
152 lines
5.7 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from fastdeploy import ModelFormat
|
|
import fastdeploy as fd
|
|
import cv2
|
|
import os
|
|
import pickle
|
|
import numpy as np
|
|
import runtime_config as rc
|
|
|
|
|
|
def test_detection_blazeface():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_1000e.tgz"
|
|
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
|
|
input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
|
|
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_result1.pkl"
|
|
result_url2 = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_result2.pkl"
|
|
fd.download_and_decompress(model_url, "resources")
|
|
fd.download(input_url1, "resources")
|
|
fd.download(input_url2, "resources")
|
|
|
|
|
|
model_dir = "resources/blazeface_1000e"
|
|
model_file = os.path.join(model_dir, "model.pdmodel")
|
|
params_file = os.path.join(model_dir, "model.pdiparams")
|
|
config_file = os.path.join(model_dir, "infer_cfg.yml")
|
|
model = fd.vision.facedet.BlazeFace(
|
|
model_file, params_file, config_file, runtime_option=rc.test_option)
|
|
model.postprocessor.conf_threshold = 0.5
|
|
|
|
with open("resources/blazeface_result1.pkl", "rb") as f:
|
|
expect1 = pickle.load(f)
|
|
|
|
with open("resources/blazeface_result2.pkl", "rb") as f:
|
|
expect2 = pickle.load(f)
|
|
|
|
im1 = cv2.imread("./resources/000000014439.jpg")
|
|
im2 = cv2.imread("./resources/000000570688.jpg")
|
|
|
|
for i in range(3):
|
|
# test single predict
|
|
result1 = model.predict(im1)
|
|
result2 = model.predict(im2)
|
|
|
|
diff_boxes_1 = np.fabs(
|
|
np.array(result1.boxes) - np.array(expect1["boxes"]))
|
|
diff_boxes_2 = np.fabs(
|
|
np.array(result2.boxes) - np.array(expect2["boxes"]))
|
|
|
|
diff_scores_1 = np.fabs(
|
|
np.array(result1.scores) - np.array(expect1["scores"]))
|
|
diff_scores_2 = np.fabs(
|
|
np.array(result2.scores) - np.array(expect2["scores"]))
|
|
|
|
assert diff_boxes_1.max(
|
|
) < 1e-04, "There's difference in detection boxes 1."
|
|
assert diff_scores_1.max(
|
|
) < 1e-04, "There's difference in detection score 1."
|
|
|
|
assert diff_boxes_2.max(
|
|
) < 1e-03, "There's difference in detection boxes 2."
|
|
assert diff_scores_2.max(
|
|
) < 1e-04, "There's difference in detection score 2."
|
|
|
|
print("one image test success!")
|
|
|
|
# test batch predict
|
|
results = model.batch_predict([im1, im2])
|
|
result1 = results[0]
|
|
result2 = results[1]
|
|
|
|
diff_boxes_1 = np.fabs(
|
|
np.array(result1.boxes) - np.array(expect1["boxes"]))
|
|
diff_boxes_2 = np.fabs(
|
|
np.array(result2.boxes) - np.array(expect2["boxes"]))
|
|
|
|
diff_scores_1 = np.fabs(
|
|
np.array(result1.scores) - np.array(expect1["scores"]))
|
|
diff_scores_2 = np.fabs(
|
|
np.array(result2.scores) - np.array(expect2["scores"]))
|
|
assert diff_boxes_1.max(
|
|
) < 1e-04, "There's difference in detection boxes 1."
|
|
assert diff_scores_1.max(
|
|
) < 1e-03, "There's difference in detection score 1."
|
|
|
|
assert diff_boxes_2.max(
|
|
) < 1e-04, "There's difference in detection boxes 2."
|
|
assert diff_scores_2.max(
|
|
) < 1e-04, "There's difference in detection score 2."
|
|
|
|
print("batch predict success!")
|
|
|
|
|
|
def test_detection_blazeface_runtime():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_1000e.tgz"
|
|
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
|
|
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_result1.pkl"
|
|
fd.download_and_decompress(model_url, "resources")
|
|
fd.download(input_url1, "resources")
|
|
fd.download(result_url1, "resources")
|
|
|
|
model_dir = "resources/blazeface_1000e"
|
|
model_file = os.path.join(model_dir, "model.pdmodel")
|
|
params_file = os.path.join(model_dir, "model.pdiparams")
|
|
config_file = os.path.join(model_dir, "infer_cfg.yml")
|
|
|
|
preprocessor = fd.vision.facedet.BlazeFacePreprocessor()
|
|
postprocessor = fd.vision.facedet.BlazeFacePostprocessor()
|
|
|
|
rc.test_option.set_model_path(model_file, params_file, config_file, model_format=ModelFormat.PADDLE)
|
|
rc.test_option.use_openvino_backend()
|
|
runtime = fd.Runtime(rc.test_option)
|
|
|
|
with open("resources/blazeface_result1.pkl", "rb") as f:
|
|
expect1 = pickle.load(f)
|
|
|
|
im1 = cv2.imread("resources/000000014439.jpg")
|
|
|
|
for i in range(3):
|
|
# test runtime
|
|
input_tensors, ims_info = preprocessor.run([im1.copy()])
|
|
output_tensors = runtime.infer({"images": input_tensors[0]})
|
|
results = postprocessor.run(output_tensors, ims_info)
|
|
result1 = results[0]
|
|
|
|
diff_boxes_1 = np.fabs(
|
|
np.array(result1.boxes) - np.array(expect1["boxes"]))
|
|
diff_scores_1 = np.fabs(
|
|
np.array(result1.scores) - np.array(expect1["scores"]))
|
|
|
|
assert diff_boxes_1.max(
|
|
) < 1e-03, "There's difference in detection boxes 1."
|
|
assert diff_scores_1.max(
|
|
) < 1e-04, "There's difference in detection score 1."
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_detection_blazeface()
|
|
test_detection_blaze_runtime()
|