# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fastdeploy import ModelFormat import fastdeploy as fd import cv2 import os import pickle import numpy as np import runtime_config as rc def test_detection_blazeface(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_1000e.tgz" input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg" input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg" result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_result1.pkl" result_url2 = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_result2.pkl" fd.download_and_decompress(model_url, "resources") fd.download(input_url1, "resources") fd.download(input_url2, "resources") model_dir = "resources/blazeface_1000e" model_file = os.path.join(model_dir, "model.pdmodel") params_file = os.path.join(model_dir, "model.pdiparams") config_file = os.path.join(model_dir, "infer_cfg.yml") model = fd.vision.facedet.BlazeFace( model_file, params_file, config_file, runtime_option=rc.test_option) model.postprocessor.conf_threshold = 0.5 with open("resources/blazeface_result1.pkl", "rb") as f: expect1 = pickle.load(f) with open("resources/blazeface_result2.pkl", "rb") as f: expect2 = pickle.load(f) im1 = cv2.imread("./resources/000000014439.jpg") im2 = cv2.imread("./resources/000000570688.jpg") for i in range(3): # test single predict result1 = model.predict(im1) result2 = model.predict(im2) diff_boxes_1 = np.fabs( np.array(result1.boxes) - np.array(expect1["boxes"])) diff_boxes_2 = np.fabs( np.array(result2.boxes) - np.array(expect2["boxes"])) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expect1["scores"])) diff_scores_2 = np.fabs( np.array(result2.scores) - np.array(expect2["scores"])) assert diff_boxes_1.max( ) < 1e-04, "There's difference in detection boxes 1." assert diff_scores_1.max( ) < 1e-04, "There's difference in detection score 1." assert diff_boxes_2.max( ) < 1e-03, "There's difference in detection boxes 2." assert diff_scores_2.max( ) < 1e-04, "There's difference in detection score 2." print("one image test success!") # test batch predict results = model.batch_predict([im1, im2]) result1 = results[0] result2 = results[1] diff_boxes_1 = np.fabs( np.array(result1.boxes) - np.array(expect1["boxes"])) diff_boxes_2 = np.fabs( np.array(result2.boxes) - np.array(expect2["boxes"])) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expect1["scores"])) diff_scores_2 = np.fabs( np.array(result2.scores) - np.array(expect2["scores"])) assert diff_boxes_1.max( ) < 1e-04, "There's difference in detection boxes 1." assert diff_scores_1.max( ) < 1e-03, "There's difference in detection score 1." assert diff_boxes_2.max( ) < 1e-04, "There's difference in detection boxes 2." assert diff_scores_2.max( ) < 1e-04, "There's difference in detection score 2." print("batch predict success!") def test_detection_blazeface_runtime(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_1000e.tgz" input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg" result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/blazeface_result1.pkl" fd.download_and_decompress(model_url, "resources") fd.download(input_url1, "resources") fd.download(result_url1, "resources") model_dir = "resources/blazeface_1000e" model_file = os.path.join(model_dir, "model.pdmodel") params_file = os.path.join(model_dir, "model.pdiparams") config_file = os.path.join(model_dir, "infer_cfg.yml") preprocessor = fd.vision.facedet.BlazeFacePreprocessor() postprocessor = fd.vision.facedet.BlazeFacePostprocessor() rc.test_option.set_model_path(model_file, params_file, config_file, model_format=ModelFormat.PADDLE) rc.test_option.use_openvino_backend() runtime = fd.Runtime(rc.test_option) with open("resources/blazeface_result1.pkl", "rb") as f: expect1 = pickle.load(f) im1 = cv2.imread("resources/000000014439.jpg") for i in range(3): # test runtime input_tensors, ims_info = preprocessor.run([im1.copy()]) output_tensors = runtime.infer({"images": input_tensors[0]}) results = postprocessor.run(output_tensors, ims_info) result1 = results[0] diff_boxes_1 = np.fabs( np.array(result1.boxes) - np.array(expect1["boxes"])) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expect1["scores"])) assert diff_boxes_1.max( ) < 1e-03, "There's difference in detection boxes 1." assert diff_scores_1.max( ) < 1e-04, "There's difference in detection score 1." if __name__ == "__main__": test_detection_blazeface() test_detection_blaze_runtime()