mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
101 lines
5.1 KiB
Markdown
101 lines
5.1 KiB
Markdown
English | [简体中文](README_CN.md)
|
||
# MODNet C++ Deployment Example
|
||
|
||
This directory provides examples that `infer.cc` fast finishes the deployment of ArcFace on CPU/GPU and GPU accelerated by TensorRT.
|
||
|
||
Before deployment, two steps require confirmation
|
||
|
||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
|
||
|
||
```bash
|
||
mkdir build
|
||
cd build
|
||
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
|
||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||
make -j
|
||
|
||
# Download the official converted MODNet model files and test images
|
||
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/modnet_photographic_portrait_matting.onnx
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
|
||
|
||
|
||
# CPU inference
|
||
./infer_demo modnet_photographic_portrait_matting.onnx matting_input.jpg matting_bgr.jpg 0
|
||
# GPU inference
|
||
./infer_demo modnet_photographic_portrait_matting.onnx matting_input.jpg matting_bgr.jpg 1
|
||
# TensorRT inference on GPU
|
||
./infer_demo modnet_photographic_portrait_matting.onnx matting_input.jpg matting_bgr.jpg 2
|
||
```
|
||
|
||
The visualized result after running is as follows
|
||
|
||
<div width="840">
|
||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852040-759da522-fca4-4786-9205-88c622cd4a39.jpg">
|
||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186851995-fe9f509f-97d4-4967-a3b0-ce2b3c2f5dca.jpg">
|
||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852116-cf91445b-3a67-45d9-a675-c69fe77c383a.jpg">
|
||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186851964-4c9086b9-3490-4fcb-82f9-2106c63aa4f3.jpg">
|
||
</div>
|
||
|
||
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
|
||
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md)
|
||
|
||
## MODNet C++ Interface
|
||
|
||
### MODNet Class
|
||
|
||
```c++
|
||
fastdeploy::vision::matting::MODNet(
|
||
const string& model_file,
|
||
const string& params_file = "",
|
||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||
const ModelFormat& model_format = ModelFormat::ONNX)
|
||
```
|
||
|
||
MODNet model loading and initialization, among which model_file is the exported ONNX model format
|
||
|
||
**Parameter**
|
||
|
||
> * **model_file**(str): Model file path
|
||
> * **params_file**(str): Parameter file path. Only passing an empty string when the model is in ONNX format
|
||
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
||
> * **model_format**(ModelFormat): Model format. ONNX format by default
|
||
|
||
#### Predict Function
|
||
|
||
> ```c++
|
||
> MODNet::Predict(cv::Mat* im, MattingResult* result,
|
||
> float conf_threshold = 0.25,
|
||
> float nms_iou_threshold = 0.5)
|
||
> ```
|
||
>
|
||
> Model prediction interface. Input images and output detection results.
|
||
>
|
||
> **Parameter**
|
||
>
|
||
> > * **im**: Input images in HWC or BGR format
|
||
> > * **result**: Detection results, including detection box and confidence of each box. Refer to [Vision Model Prediction Result](../../../../../docs/api/vision_results/) for MattingResult
|
||
> > * **conf_threshold**: Filtering threshold of detection box confidence
|
||
> > * **nms_iou_threshold**: iou threshold during NMS processing
|
||
|
||
### Class Member Variable
|
||
#### Pre-processing Parameter
|
||
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
|
||
|
||
|
||
> > * **size**(vector<int>): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [256, 256]
|
||
> > * **alpha**(vector<float>): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`,alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
||
> > * **beta**(vector<float>): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`,beta defaults to [-1.f, -1.f, -1.f]
|
||
> > * **swap_rb**(bool): Whether to convert BGR to RGB in pre-processing. Default True
|
||
|
||
- [Model Description](../../)
|
||
- [Python Deployment](../python)
|
||
- [Vision Model Prediction Results](../../../../../docs/api/vision_results/)
|
||
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|