Files
FastDeploy/examples/vision/matting/modnet/cpp/README.md
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00

101 lines
5.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

English | [简体中文](README_CN.md)
# MODNet C++ Deployment Example
This directory provides examples that `infer.cc` fast finishes the deployment of ArcFace on CPU/GPU and GPU accelerated by TensorRT.
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
```bash
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download the official converted MODNet model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/modnet_photographic_portrait_matting.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
# CPU inference
./infer_demo modnet_photographic_portrait_matting.onnx matting_input.jpg matting_bgr.jpg 0
# GPU inference
./infer_demo modnet_photographic_portrait_matting.onnx matting_input.jpg matting_bgr.jpg 1
# TensorRT inference on GPU
./infer_demo modnet_photographic_portrait_matting.onnx matting_input.jpg matting_bgr.jpg 2
```
The visualized result after running is as follows
<div width="840">
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852040-759da522-fca4-4786-9205-88c622cd4a39.jpg">
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186851995-fe9f509f-97d4-4967-a3b0-ce2b3c2f5dca.jpg">
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852116-cf91445b-3a67-45d9-a675-c69fe77c383a.jpg">
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186851964-4c9086b9-3490-4fcb-82f9-2106c63aa4f3.jpg">
</div>
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md)
## MODNet C++ Interface
### MODNet Class
```c++
fastdeploy::vision::matting::MODNet(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
MODNet model loading and initialization, among which model_file is the exported ONNX model format
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path. Only passing an empty string when the model is in ONNX format
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. ONNX format by default
#### Predict Function
> ```c++
> MODNet::Predict(cv::Mat* im, MattingResult* result,
> float conf_threshold = 0.25,
> float nms_iou_threshold = 0.5)
> ```
>
> Model prediction interface. Input images and output detection results.
>
> **Parameter**
>
> > * **im**: Input images in HWC or BGR format
> > * **result**: Detection results, including detection box and confidence of each box. Refer to [Vision Model Prediction Result](../../../../../docs/api/vision_results/) for MattingResult
> > * **conf_threshold**: Filtering threshold of detection box confidence
> > * **nms_iou_threshold**: iou threshold during NMS processing
### Class Member Variable
#### Pre-processing Parameter
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
> > * **size**(vector&lt;int&gt;): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [256, 256]
> > * **alpha**(vector&lt;float&gt;): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]
> > * **beta**(vector&lt;float&gt;): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`beta defaults to [-1.f, -1.f, -1.f]
> > * **swap_rb**(bool): Whether to convert BGR to RGB in pre-processing. Default True
- [Model Description](../../)
- [Python Deployment](../python)
- [Vision Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)