Files
FastDeploy/examples/vision/keypointdetection/tiny_pose/python/README.md
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00

82 lines
4.2 KiB
Markdown
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

English | [简体中文](README_CN.md)
# PP-TinyPose Python Deployment Example
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
This directory provides the `Multi-person keypoint detection in a single image` example that `pptinypose_infer.py` fast finishes the deployment of PP-TinyPose on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
>> **Attention**: single model currently only supports single-person keypoint detection in a single image. Therefore, the input image should contain one person only or should be cropped. For multi-person keypoint detection, refer to [PP-TinyPose Pipeline](../../det_keypoint_unite/python/README.md)
```bash
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/keypointdetection/tiny_pose/python
# Download PP-TinyPose model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
# CPU inference
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device cpu
# GPU inference
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu
# TensorRT inference on GPUAttention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu --use_trt True
# KunlunXin XPU inference
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device kunlunxin
```
The visualized result after running is as follows
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
</div>
## PP-TinyPose Python Interface
```python
fd.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PP-TinyPose model loading and initialization, among which model_file, params_file, and config_file are the Paddle inference files exported from the training model. Refer to [Model Export](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/EXPORT_MODEL.md) for more information
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path
> * **config_file**(str): Inference deployment configuration file
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. Paddle format by default
### predict function
> ```python
> PPTinyPose.predict(input_image)
> ```
>
> Model prediction interface. Input images and output detection results.
>
> **Parameter**
>
> > * **input_image**(np.ndarray): Input data in HWC or BGR format
> **Return**
>
> > Return `fastdeploy.vision.KeyPointDetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure.
### Class Member Property
#### Post-processing Parameter
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
> > * **use_dark**(bool): • Whether to use DARK for post-processing. Refer to [Reference Paper](https://arxiv.org/abs/1910.06278)
## Other Documents
- [PP-TinyPose Model Description](..)
- [PP-TinyPose C++ Deployment](../cpp)
- [Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)