Files
FastDeploy/examples/vision/classification/paddleclas/python/README.md
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00

3.8 KiB
Executable File
Raw Blame History

English | 简体中文

Example of PaddleClas models Python Deployment

Before deployment, two steps require confirmation.

This directory provides examples that infer.py fast finishes the deployment of ResNet50_vd on CPU/GPU and GPU accelerated by TensorRT. The script is as follows

# Download deployment example code 
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd  FastDeploy/examples/vision/classification/paddleclas/python

# Download the ResNet50_vd model file and test images 
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg

# CPU inference
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
# GPU inference
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
# Use TensorRT inference on GPU Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
# IPU inferenceAttention: It is somewhat time-consuming for the operation of model serialization when running IPU inference for the first time. Please be patient.
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device ipu --topk 1
# XPU inference
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device xpu --topk 1

The result returned after running is as follows

ClassifyResult(
label_ids: 153,
scores: 0.686229,
)

PaddleClasModel Python Interface

fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)

PaddleClas model loading and initialization, where model_file and params_file are the Paddle inference files exported from the training model. Refer to Model Export for more information

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path
  • config_file(str): Inference deployment configuration file
  • runtime_option(RuntimeOption): Backend Inference configuration. None by default. (use the default configuration)
  • model_format(ModelFormat): Model format. Paddle format by default

predict function

PaddleClasModel.predict(input_image, topk=1)

Model prediction interface. Input images and output classification topk results directly.

Parameter

  • input_image(np.ndarray): Input data in HWC or BGR format
  • topk(int): Return the topk classification results with the highest prediction probability. Default 1

Return

Return fastdeploy.vision.ClassifyResult structure. Refer to Visual Model Prediction Results for the description of the structure.

Other documents