mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
100 lines
4.0 KiB
Markdown
Executable File
100 lines
4.0 KiB
Markdown
Executable File
English | [简体中文](README_CN.md)
|
|
# PaddleClas C# Deployment Example
|
|
|
|
This directory provides example `infer.cs` to fastly finish the deployment of PaddleClas models on CPU/GPU.
|
|
|
|
Before deployment, two steps require confirmation
|
|
|
|
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
|
|
Please follow below instructions to compile and test in Windows. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
|
|
|
|
## 1. Download C# package management tool nuget client
|
|
> https://dist.nuget.org/win-x86-commandline/v6.4.0/nuget.exe
|
|
|
|
Add nuget program into system variable **PATH**
|
|
|
|
## 2. Download model and image for test
|
|
> https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz # (下载后解压缩)
|
|
> https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
|
|
|
## 3. Compile example code
|
|
|
|
Open `x64 Native Tools Command Prompt for VS 2019` command tool on Windows, cd to the demo path of ppyoloe and execute commands
|
|
|
|
```shell
|
|
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\classification\paddleclas\csharp
|
|
|
|
mkdir build && cd build
|
|
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=D:\Download\fastdeploy-win-x64-gpu-x.x.x -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
|
|
|
|
nuget restore
|
|
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
|
|
```
|
|
|
|
For more information about how to use FastDeploy SDK to compile a project with Visual Studio 2019. Please refer to
|
|
- [Using the FastDeploy C++ SDK on Windows Platform](../../../../../docs/en/faq/use_sdk_on_windows.md)
|
|
|
|
## 4. Execute compiled program
|
|
fastdeploy.dll and related dynamic libraries are required by the program. FastDeploy provide a script to copy all required dll to your program path.
|
|
|
|
```shell
|
|
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x
|
|
|
|
fastdeploy_init.bat install %cd% D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\classification\paddleclas\csharp\build\Release
|
|
```
|
|
Then you can run your program and test the model with image
|
|
|
|
```shell
|
|
cd Release
|
|
# CPU inference
|
|
infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
|
|
# GPU inference
|
|
infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
|
|
```
|
|
|
|
## PaddleClas C# Interface
|
|
|
|
### Model Class
|
|
|
|
```c#
|
|
fastdeploy.vision.classification.PaddleClasModel(
|
|
string model_file,
|
|
string params_file,
|
|
string config_file
|
|
fastdeploy.RuntimeOption runtime_option = null,
|
|
fastdeploy.ModelFormat model_format = ModelFormat.PADDLE)
|
|
```
|
|
|
|
> PaddleClasModel initilization.
|
|
|
|
> **Params**
|
|
|
|
>> * **model_file**(str): Model file path
|
|
>> * **params_file**(str): Parameter file path
|
|
>> * **config_file**(str): Configuration file path, which is the deployment yaml file exported by PaddleClas
|
|
>> * **runtime_option**(RuntimeOption): Backend inference configuration. null by default, which is the default configuration
|
|
>> * **model_format**(ModelFormat): Model format. Paddle format by default
|
|
|
|
#### Predict Function
|
|
|
|
```c#
|
|
fastdeploy.ClassifyResult Predict(OpenCvSharp.Mat im)
|
|
```
|
|
|
|
> Model prediction interface. Input images and output results directly.
|
|
>
|
|
> **Params**
|
|
>
|
|
>> * **im**(Mat): Input images in HWC or BGR format
|
|
>
|
|
> **Return**
|
|
>
|
|
>> * **result**(ClassifyResult): The classification result, including label_id, and the corresponding confidence. Refer to [Visual Model Prediction Results](../../../../../docs/api/vision_results/) for the description of ClassifyResult
|
|
|
|
- [Model Description](../../)
|
|
- [Python Deployment](../python)
|
|
- [Vision Model prediction results](../../../../../docs/api/vision_results/)
|
|
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|