mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Fix links in readme * Fix links in readme * Update PPOCRv2/v3 examples * Update auto compression configs * Add neww quantization support for paddleclas model * Update quantized Yolov6s model download link * Improve PPOCR comments * Add English doc for quantization * Fix PPOCR rec model bug * Add new paddleseg quantization support * Add new paddleseg quantization support * Add new paddleseg quantization support * Add new paddleseg quantization support * Add Ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Support DirectML in onnxruntime * Support onnxruntime DirectML * Support onnxruntime DirectML * Support onnxruntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Remove DirectML vision model example * Imporve OnnxRuntime DirectML * Imporve OnnxRuntime DirectML * fix opencv cmake in Windows * recheck codestyle
87 lines
4.0 KiB
Markdown
Executable File
87 lines
4.0 KiB
Markdown
Executable File
English | [简体中文](README_CN.md)
|
|
# PaddleClas C++ Deployment Example
|
|
|
|
This directory provides examples that `infer.cc` fast finishes the deployment of PaddleClas models on CPU/GPU and GPU accelerated by TensorRT.
|
|
|
|
Before deployment, two steps require confirmation.
|
|
|
|
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md).
|
|
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md).
|
|
|
|
Taking ResNet50_vd inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
|
|
|
|
```bash
|
|
mkdir build
|
|
cd build
|
|
# Download FastDeploy precompiled library. Users can choose your appropriate version in the`FastDeploy Precompiled Library` mentioned above
|
|
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
|
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
|
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
|
make -j
|
|
|
|
# Download ResNet50_vd model file and test images
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
|
tar -xvf ResNet50_vd_infer.tgz
|
|
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
|
|
|
|
|
# CPU inference
|
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
|
|
# GPU inference
|
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
|
|
# TensorRT inference on GPU
|
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
|
|
# IPU inference
|
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 3
|
|
# KunlunXin XPU inference
|
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 4
|
|
# Ascend inference
|
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 5
|
|
```
|
|
|
|
The above command works for Linux or MacOS. Refer to
|
|
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/cn/faq/use_sdk_on_windows.md) for SDK use-pattern in Windows
|
|
|
|
## PaddleClas C++ Interface
|
|
|
|
### PaddleClas Class
|
|
|
|
```c++
|
|
fastdeploy::vision::classification::PaddleClasModel(
|
|
const string& model_file,
|
|
const string& params_file,
|
|
const string& config_file,
|
|
const RuntimeOption& runtime_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::PADDLE)
|
|
```
|
|
|
|
PaddleClas model loading and initialization, where model_file and params_file are the Paddle inference files exported from the training model. Refer to [Model Export](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA) for more information
|
|
|
|
**Parameter**
|
|
|
|
> * **model_file**(str): Model file path
|
|
> * **params_file**(str): Parameter file path
|
|
> * **config_file**(str): Inference deployment configuration file
|
|
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default. (use the default configuration)
|
|
> * **model_format**(ModelFormat): Model format. Paddle format by default
|
|
|
|
#### Predict function
|
|
|
|
> ```c++
|
|
> PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
|
|
> ```
|
|
>
|
|
> Model prediction interface. Input images and output results directly.
|
|
>
|
|
> **Parameter**
|
|
>
|
|
> > * **im**: Input images in HWC or BGR format
|
|
> > * **result**: The classification result, including label_id, and the corresponding confidence. Refer to [Visual Model Prediction Results](../../../../../docs/api/vision_results/) for the description of ClassifyResult
|
|
> > * **topk**(int): Return the topk classification results with the highest prediction probability. Default 1
|
|
|
|
|
|
- [Model Description](../../)
|
|
- [Python Deployment](../python)
|
|
- [Visual Model prediction results](../../../../../docs/api/vision_results/)
|
|
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|