mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
79 lines
3.2 KiB
Markdown
79 lines
3.2 KiB
Markdown
# PP-Tracking C++部署示例
|
||
|
||
本目录下提供`infer.cc`快速完成PP-Tracking在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
以Linux上 PP-Tracking 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)下载CPU推理库)
|
||
|
||
```bash
|
||
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
|
||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
|
||
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
|
||
cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/tracking/pptracking/cpp/
|
||
mkdir build && cd build
|
||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0
|
||
make -j
|
||
|
||
# 下载PP-Tracking模型文件和测试视频
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
|
||
tar -xvf fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4
|
||
|
||
|
||
# CPU推理
|
||
./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 0
|
||
# GPU推理
|
||
./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 1
|
||
# GPU上TensorRT推理
|
||
./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 2
|
||
```
|
||
|
||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||
|
||
## PP-Tracking C++接口
|
||
|
||
### PPTracking类
|
||
|
||
```c++
|
||
fastdeploy::vision::tracking::PPTracking(
|
||
const string& model_file,
|
||
const string& params_file = "",
|
||
const string& config_file,
|
||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||
```
|
||
|
||
PP-Tracking模型加载和初始化,其中model_file为导出的Paddle模型格式。
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径
|
||
> * **config_file**(str): 推理部署配置文件
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||
|
||
#### Predict函数
|
||
|
||
> ```c++
|
||
> PPTracking::Predict(cv::Mat* im, MOTResult* result)
|
||
> ```
|
||
>
|
||
> 模型预测接口,输入图像直接输出检测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||
> > * **result**: 检测结果,包括检测框,跟踪id,各个框的置信度,对象类别id,MOTResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
|
||
- [模型介绍](../../)
|
||
- [Python部署](../python)
|
||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|