mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test * update yolov5cls api * update yolov5cls api Co-authored-by: Jason <jiangjiajun@baidu.com>
74 lines
2.6 KiB
Markdown
Executable File
74 lines
2.6 KiB
Markdown
Executable File
# YOLOv5Cls Python部署示例
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
本目录下提供`infer.py`快速完成YOLOv5Cls在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||
|
||
```bash
|
||
#下载部署示例代码
|
||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||
cd examples/vision/classification/yolov5cls/python/
|
||
|
||
#下载 YOLOv5Cls 模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-cls.onnx
|
||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||
|
||
# CPU推理
|
||
python infer.py --model yolov5n-cls.onnx --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
|
||
# GPU推理
|
||
python infer.py --model yolov5n-cls.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
|
||
# GPU上使用TensorRT推理
|
||
python infer.py --model yolov5n-cls.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True
|
||
```
|
||
|
||
运行完成后返回结果如下所示
|
||
```bash
|
||
ClassifyResult(
|
||
label_ids: 265,
|
||
scores: 0.196327,
|
||
)
|
||
```
|
||
|
||
## YOLOv5Cls Python接口
|
||
|
||
```python
|
||
fastdeploy.vision.classification.YOLOv5Cls(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
||
```
|
||
|
||
YOLOv5Cls模型加载和初始化,其中model_file为导出的ONNX模型格式
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为ONNX
|
||
|
||
### predict函数
|
||
|
||
> ```python
|
||
> YOLOv5Cls.predict(image_data, topk=1)
|
||
> ```
|
||
>
|
||
> 模型预测结口,输入图像直接输出分类topk结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
|
||
|
||
> **返回**
|
||
>
|
||
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
|
||
## 其它文档
|
||
|
||
- [YOLOv5Cls 模型介绍](..)
|
||
- [YOLOv5Cls C++部署](../cpp)
|
||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|