mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [Docs] Improve reasoning_out docs * [Docs] Improve reasoning_out docs * [Docs] Improve reasoning_out docs * [Docs] add ERNIE-4.5-VL-28B-A3B-Thinking instruction * [Docs] add ERNIE-4.5-VL-28B-A3B-Thinking instruction * [Docs] add ERNIE-4.5-VL-28B-A3B-Thinking instruction --------- Co-authored-by: liqinrui <liqinrui@baidu.com>
237 lines
6.7 KiB
Markdown
237 lines
6.7 KiB
Markdown
# Tool_Calling
|
||
|
||
本文档介绍如何在 FastDeploy 中配置服务器以使用工具解析器(tool parser),以及如何在客户端调用工具。
|
||
|
||
## Ernie系列模型配套工具解释器
|
||
| 模型名称 | 解析器名称 |
|
||
|---------------|-------------|
|
||
| baidu/ERNIE-4.5-21B-A3B-Thinking | ernie-x1 |
|
||
| baidu/ERNIE-4.5-VL-28B-A3B-Thinking | ernie-45-vl-thinking |
|
||
|
||
## 快速开始
|
||
|
||
### 启动包含解析器的FastDeploy
|
||
|
||
使用包含思考解析器和工具解析器的命令启动服务器。下面的示例使用 ERNIE-4.5-21B-A3B。我们可以使用 fastdeploy 目录中的 ernie-x1 思考解析器(reasoning parser)和 ernie-x1 工具调用解析器(tool-call parser);从而实现解析模型的思考内容、回复内容以及工具调用信息:
|
||
|
||
```bash
|
||
python -m fastdeploy.entrypoints.openai.api_server
|
||
--model /models/ERNIE-4.5-21B-A3B \
|
||
--port 8000 \
|
||
--reasoning-parser ernie-x1 \
|
||
--tool-call-parser ernie-x1
|
||
```
|
||
|
||
### 触发工具调用示例
|
||
|
||
构造一个包含工具的请求以触发模型调用工具:
|
||
|
||
```python
|
||
curl -X POST http://0.0.0.0:8000/v1/chat/completions \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"messages": [
|
||
{
|
||
"role": "user",
|
||
"content": "北京今天天气怎么样?"
|
||
}
|
||
],
|
||
"tools": [
|
||
{
|
||
"type": "function",
|
||
"function": {
|
||
"name": "get_weather",
|
||
"description": "获取指定地点的当前天气",
|
||
"parameters": {
|
||
"type": "object",
|
||
"properties": {
|
||
"location": {
|
||
"type": "string",
|
||
"description": "城市名,如:北京。"
|
||
},
|
||
"unit": {
|
||
"type": "string",
|
||
"enum": ["c", "f"],
|
||
"description": "温度单位:c = 摄氏度,f = 华氏度"
|
||
}
|
||
},
|
||
"required": ["location", "unit"],
|
||
"additionalProperties": false
|
||
},
|
||
"strict": true
|
||
}
|
||
}
|
||
]
|
||
}'
|
||
```
|
||
|
||
示例输出如下,可以看到成功解析出了模型输出的思考内容`reasoning_content`以及工具调用信息`tool_calls`,且当前的回复内容`content`为空,`finish_reason`为工具调用`tool_calls`:
|
||
```bash
|
||
{
|
||
"choices": [
|
||
{
|
||
"index": 0,
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": "",
|
||
"multimodal_content": null,
|
||
"reasoning_content": "User wants to ... ",
|
||
"tool_calls": [
|
||
{
|
||
"id": "chatcmpl-tool-bc90641c67e44dbfb981a79bc986fbe5",
|
||
"type": "function",
|
||
"function": {
|
||
"name": "get_weather",
|
||
"arguments": "{\"location\": \"北京\", \"unit\": \"c\"}"
|
||
}
|
||
}
|
||
],
|
||
"finish_reason": "tool_calls"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
## 并行工具调用
|
||
|
||
如果模型能够生成多个并行的工具调用,FastDeploy 会返回一个列表:
|
||
|
||
```bash
|
||
tool_calls=[
|
||
{"id": "...", "function": {...}},
|
||
{"id": "...", "function": {...}}
|
||
]
|
||
```
|
||
|
||
## 工具调用结果出现在历史会话中
|
||
|
||
如果前几轮对话中包含工具调用,可以按以下方式构造请求:
|
||
|
||
```python
|
||
curl -X POST "http://0.0.0.0:8000/v1/chat/completions" \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"messages": [
|
||
{
|
||
"role": "user",
|
||
"content": "你好,北京天气怎么样?"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"tool_calls": [
|
||
{
|
||
"id": "call_1",
|
||
"type": "function",
|
||
"function": {
|
||
"name": "get_weather",
|
||
"arguments": {
|
||
"location": "北京",
|
||
"unit": "c"
|
||
}
|
||
}
|
||
}
|
||
],
|
||
"thoughts": "用户需要查询北京今天的天气。"
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"tool_call_id": "call_1",
|
||
"content": {
|
||
"type": "text",
|
||
"text": "{\"location\": \"北京\",\"temperature\": \"23\",\"weather\": \"晴\",\"unit\": \"c\"}"
|
||
}
|
||
}
|
||
],
|
||
"tools": [
|
||
{
|
||
"type": "function",
|
||
"function": {
|
||
"name": "get_weather",
|
||
"description": "获取指定位置的当前天气。",
|
||
"parameters": {
|
||
"type": "object",
|
||
"properties": {
|
||
"location": {
|
||
"type": "string",
|
||
"description": "城市名称,例如:北京"
|
||
},
|
||
"unit": {
|
||
"type": "string",
|
||
"enum": [
|
||
"c",
|
||
"f"
|
||
],
|
||
"description": "温度单位:c = 摄氏度,f = 华氏度"
|
||
}
|
||
},
|
||
"additionalProperties": false,
|
||
"required": [
|
||
"location",
|
||
"unit"
|
||
]
|
||
},
|
||
"strict": true
|
||
}
|
||
}
|
||
]
|
||
}'
|
||
```
|
||
解析出的模型输出结果如下,包含思考内容`reasoning_content`与回复内容`content`,且`finish_reason`为`stop`:
|
||
```bash
|
||
{
|
||
"choices": [
|
||
{
|
||
"index": 0,
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": "北京今天的天气是晴天,气温为23摄氏度。",
|
||
"reasoning_content": "用户想...",
|
||
"tool_calls": null
|
||
},
|
||
"finish_reason": "stop"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
## 编写自定义工具解析器
|
||
FastDeploy支持自定义工具解析器插件,可以参考以下地址中的`tool parser`创建:`fastdeploy/entrypoints/openai/tool_parser`
|
||
|
||
自定义解析器需要实现:
|
||
|
||
```python
|
||
# import the required packages
|
||
# register the tool parser to ToolParserManager
|
||
@ToolParserManager.register_module("my-parser")
|
||
class ToolParser:
|
||
def __init__(self, tokenizer: AnyTokenizer):
|
||
super().__init__(tokenizer)
|
||
|
||
# implement the tool parse for non-stream call
|
||
def extract_tool_calls(self, model_output: str, request: ChatCompletionRequest) -> ExtractToolCallInformation:
|
||
return ExtractedToolCallInformation(tools_called=False,tool_calls=[],content=text)
|
||
|
||
# implement the tool call parse for stream call
|
||
def extract_tool_calls_streaming(
|
||
self,
|
||
previous_text: str,
|
||
current_text: str,
|
||
delta_text: str,
|
||
previous_token_ids: Sequence[int],
|
||
current_token_ids: Sequence[int],
|
||
delta_token_ids: Sequence[int],
|
||
request: ChatCompletionRequest,
|
||
) -> DeltaMessage | None:
|
||
return delta
|
||
```
|
||
|
||
通过以下方式启用自定义解析器:
|
||
|
||
```bash
|
||
python -m fastdeploy.entrypoints.openai.api_server
|
||
--model <模型地址>
|
||
--tool-parser-plugin <自定义工具解释器的地址>
|
||
--tool-call-parser my-parser
|
||
```
|
||
|
||
---
|