mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			101 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			101 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # InsightFace Python部署示例
 | ||
| 本目录下提供infer_xxx.py快速完成InsighFace模型包括ArcFace\CosFace\VPL\Partial_FC在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
 | ||
| 
 | ||
| 在部署前,需确认以下两个步骤
 | ||
| 
 | ||
| - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/the%20software%20and%20hardware%20requirements.md)  
 | ||
| - 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start)
 | ||
| 
 | ||
| 以ArcFace为例子, 提供`infer_arcface.py`快速完成ArcFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
 | ||
| 
 | ||
| ```
 | ||
| #下载ArcFace模型文件和测试图片
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
 | ||
| wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG
 | ||
| wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG
 | ||
| wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG
 | ||
| 
 | ||
| 
 | ||
| #下载部署示例代码
 | ||
| git clone https://github.com/PaddlePaddle/FastDeploy.git
 | ||
| cd examples/vison/faceid/insightface/python/
 | ||
| 
 | ||
| # CPU推理
 | ||
| python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device cpu
 | ||
| # GPU推理
 | ||
| python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device gpu
 | ||
| # GPU上使用TensorRT推理
 | ||
| python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device gpu --use_trt True
 | ||
| ```
 | ||
| 
 | ||
| 运行完成可视化结果如下图所示
 | ||
| 
 | ||
| <div width="700">
 | ||
| <img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
 | ||
| <img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
 | ||
| <img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
 | ||
| </div>
 | ||
| 
 | ||
| ```
 | ||
| Prediction Done!
 | ||
| --- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
 | ||
| --- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
 | ||
| --- [Face 2]:FaceRecognitionResult: [Dim(512), Min(-3.243411), Max(3.875866), Mean(-0.030682)]
 | ||
| Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| ## InsightFace Python接口
 | ||
| 
 | ||
| ```
 | ||
| fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
 | ||
| fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
 | ||
| fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
 | ||
| fastdeploy.vision.faceid.VPL(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
 | ||
| ```
 | ||
| 
 | ||
| ArcFace模型加载和初始化,其中model_file为导出的ONNX模型格式
 | ||
| 
 | ||
| **参数**
 | ||
| 
 | ||
| > * **model_file**(str): 模型文件路径
 | ||
| > * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
 | ||
| > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
 | ||
| > * **model_format**(Frontend): 模型格式,默认为ONNX
 | ||
| 
 | ||
| ### predict函数
 | ||
| 
 | ||
| > ```
 | ||
| > ArcFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
 | ||
| > ```
 | ||
| >
 | ||
| > 模型预测结口,输入图像直接输出检测结果。
 | ||
| >
 | ||
| > **参数**
 | ||
| >
 | ||
| > > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
 | ||
| > > * **conf_threshold**(float): 检测框置信度过滤阈值
 | ||
| > > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
 | ||
| 
 | ||
| > **返回**
 | ||
| >
 | ||
| > > 返回`fastdeploy.vision.FaceRecognitionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| 
 | ||
| ### 类成员属性
 | ||
| #### 预处理参数
 | ||
| 用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
 | ||
| 
 | ||
| 
 | ||
| > > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
 | ||
| > > * **alpha**(list[float]): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
 | ||
| > > * **beta**(list[float]): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f]
 | ||
| > > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认True
 | ||
| > > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认False
 | ||
| 
 | ||
| 
 | ||
| ## 其它文档
 | ||
| 
 | ||
| - [InsightFace 模型介绍](..)
 | ||
| - [InsightFace C++部署](../cpp)
 | ||
| - [模型预测结果说明](../../../../../docs/api/vision_results/)
 | 
