
* Update VERSION_NUMBER * Update paddle_inference.cmake * Delete docs directory * release new docs * update version number * add vision result doc * update version * fix dead link * fix vision * fix dead link * Update README_EN.md * Update README_EN.md * Update README_EN.md * Update README_EN.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Update README_EN.md Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
5.1 KiB
How to Build GPU Deployment Environment
FastDeploy supports Paddle Inference, ONNX Runtime and TensorRT in the GPU environment. It should be noted that users also can use CPU in a GPU environment in Linux & Windows, so users can integrate the OpenVINO backend at the same time.
Backend | Platform | Supported model format | Description |
---|---|---|---|
Paddle Inference | Windows(x64) Linux(x64) |
Paddle | Support both CPU/GPU, and compilation switch is ENABLE_PADDLE_BACKEND . The default is OFF |
ONNX Runtime | Windows(x64) Linux(x64/aarch64) Mac(x86/arm64) |
Paddle/ONNX | Support both CPU/GPU, and compilation switch is ENABLE_ORT_BACKEND . The default is OFF |
TensorRT | Windows(x64) Linux(x64) |
Paddle/ONNX | Support GPU only, and compilation switch is ENABLE_TRT_BACKEND . The default is OFF |
OpenVINO | Windows(x64) Linux(x64) |
Paddle/ONNX | Support CPU only, and compilation switch is ENABLE_OPENVINO_BACKEND . The default is OFF |
Note:
When the environment is GPU, please set WITH_GPU
as ON and specify CUDA_DIRECTORY
. If TensorRT integration is needed, please specify TRT_DIRECTORY
as well.
How to Build and Install C++ SDK
Linux
Prerequisite for Compiling on Linux:
- gcc/g++ >= 5.4 (8.2 is recommended)
- cmake >= 3.18.0
- cuda >= 11.2
- cudnn >= 8.2
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy
mkdir build && cd build
cmake .. -DENABLE_ORT_BACKEND=ON \
-DENABLE_PADDLE_BACKEND=ON \
-DENABLE_OPENVINO_BACKEND=ON \
-DENABLE_TRT_BACKEND=ON \
-DWITH_GPU=ON \
-DTRT_DIRECTORY=/Paddle/TensorRT-8.4.1.5 \
-DCUDA_DIRECTORY=/usr/local/cuda \
-DCMAKE_INSTALL_PREFIX=${PWD}/compiled_fastdeploy_sdk \
-DENABLE_VISION=ON
make -j12
make install
Windows
Prerequisite for Compiling on Windows:
- Windows 10/11 x64
- Visual Studio 2019
- cuda >= 11.2
- cudnn >= 8.2
Launch the x64 Native Tools Command Prompt for VS 2019 from the Windows Start Menu and run the following commands:
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy
mkdir build && cd build
cmake .. -G "Visual Studio 16 2019" -A x64 \
-DENABLE_ORT_BACKEND=ON \
-DENABLE_PADDLE_BACKEND=ON \
-DENABLE_OPENVINO_BACKEND=ON \
-DENABLE_TRT_BACKEND=ON
-DENABLE_VISION=ON \
-DWITH_GPU=ON \
-DTRT_DIRECTORY="D:\Paddle\TensorRT-8.4.1.5" \
-DCUDA_DIRECTORY="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2" \
-DCMAKE_INSTALL_PREFIX="D:\Paddle\compiled_fastdeploy"
msbuild fastdeploy.sln /m /p:Configuration=Release /p:Platform=x64
msbuild INSTALL.vcxproj /m /p:Configuration=Release /p:Platform=x64
Once compiled, the C++ inference library is generated in the directory specified by CMAKE_INSTALL_PREFIX
If you use CMake GUI, please refer to How to Compile with CMakeGUI + Visual Studio 2019 IDE on Windows
How to Build and Install Python SDK
Linux
Prerequisite for Compiling on Linux:
-
gcc/g++ >= 5.4 (8.2 is recommended)
-
cmake >= 3.18.0
-
python >= 3.6
-
cuda >= 11.2
-
cudnn >= 8.2
All compilation options are imported via environment variables
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/python
export ENABLE_ORT_BACKEND=ON
export ENABLE_PADDLE_BACKEND=ON
export ENABLE_OPENVINO_BACKEND=ON
export ENABLE_VISION=ON
export ENABLE_TRT_BACKEND=ON
export WITH_GPU=ON
export TRT_DIRECTORY=/Paddle/TensorRT-8.4.1.5
export CUDA_DIRECTORY=/usr/local/cuda
python setup.py build
python setup.py bdist_wheel
Windows
Prerequisite for Compiling on Windows:
- Windows 10/11 x64
- Visual Studio 2019
- python >= 3.6
- cuda >= 11.2
- cudnn >= 8.2
Launch the x64 Native Tools Command Prompt for VS 2019 from the Windows Start Menu and run the following commands:
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/python
export ENABLE_ORT_BACKEND=ON
export ENABLE_PADDLE_BACKEND=ON
export ENABLE_OPENVINO_BACKEND=ON
export ENABLE_VISION=ON
export ENABLE_TRT_BACKEND=ON
export WITH_GPU=ON
export TRT_DIRECTORY="D:\Paddle\TensorRT-8.4.1.5"
export CUDA_DIRECTORY="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2"
python setup.py build
python setup.py bdist_wheel
The compiled wheel
package will be generated in the FastDeploy/python/dist
directory once finished. Users can pip-install it directly.
During the compilation, if developers want to change the compilation parameters, it is advisable to delete the build
and .setuptools-cmake-build
subdirectories in the FastDeploy/python
to avoid the possible impact from cache, and then recompile.