Files
FastDeploy/fastdeploy/worker/dcu_worker.py
2025-08-29 10:23:08 +08:00

147 lines
5.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import gc
import time
import paddle
from fastdeploy.config import FDConfig
from fastdeploy.utils import get_logger, set_random_seed
from fastdeploy.worker.dcu_model_runner import DCUModelRunner
from fastdeploy.worker.gpu_worker import GpuWorker
logger = get_logger("dcu_worker", "dcu_worker.log")
class DcuWorker(GpuWorker):
""" """
def __init__(
self,
fd_config: FDConfig,
local_rank: int,
rank: int,
):
super().__init__(
fd_config=fd_config,
local_rank=local_rank,
rank=rank,
)
pass
def init_device(self):
"""
Initialize device and construct model runner
"""
self.max_chips_per_node = 8
if self.device_config.device_type == "cuda" and paddle.device.is_compiled_with_cuda():
# Set evironment variable
self.device_ids = self.parallel_config.device_ids.split(",")
self.device = f"gpu:{self.local_rank % self.max_chips_per_node}"
paddle.device.set_device(self.device)
paddle.set_default_dtype(self.parallel_config.dtype)
gc.collect()
paddle.device.cuda.empty_cache()
if (
self.parallel_config.enable_custom_all_reduce
and self.parallel_config.tensor_parallel_size > 1
and paddle.is_compiled_with_cuda()
):
from fastdeploy.distributed.communication import use_custom_allreduce
use_custom_allreduce()
else:
raise RuntimeError(f"Not support device type: {self.device_config.device}")
set_random_seed(self.fd_config.model_config.seed)
# Construct model runner
self.model_runner: DCUModelRunner = DCUModelRunner(
fd_config=self.fd_config,
device=self.device,
device_id=self.device_ids[self.local_rank % self.max_chips_per_node],
rank=self.rank,
local_rank=self.local_rank,
)
def determine_available_memory(self) -> int:
"""
Profiles the peak memory usage of the model to determine how much
memory can be used for KV cache without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
Tip:
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
# 1. Record memory state before profile run
Gb = 1024**3
start_time = time.perf_counter()
paddle.device.cuda.reset_max_memory_reserved(self.local_rank)
paddle.device.cuda.reset_max_memory_allocated(self.local_rank)
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(self.local_rank) # not reserved
total_gpu_memory = paddle.device.cuda.get_device_properties(self.local_rank).total_memory
before_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank)
logger.info(
(
"Before running the profile, the memory usage info is as follows:",
f"\nDevice Total memory: {total_gpu_memory / Gb}",
f"\nDevice used memory: {before_used_gpu_memory / Gb}",
f"\nPaddle reserved memory: {paddle_reserved_mem_before_run / Gb}",
f"\nPaddle allocated memory: {paddle_allocated_mem_before_run / Gb}",
)
)
# 2. Profile run
self.model_runner.profile_run()
# 3. Statistical memory information
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(self.local_rank)
after_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank)
# v0 worker
model_block_memory_used = self.cal_theortical_kvcache()
paddle.device.cuda.empty_cache()
paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run
available_kv_cache_memory = (
total_gpu_memory * self.cache_config.gpu_memory_utilization - after_used_gpu_memory - paddle_peak_increase
)
available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num
end_time = time.perf_counter()
logger.info(
(
"After running the profile, the memory usage info is as follows:",
f"\nDevice Total memory: {total_gpu_memory / Gb}",
f"\nDevice used memory: {after_used_gpu_memory / Gb}",
f"\nPaddle reserved memory: {paddle_reserved_mem_after_run / Gb}",
f"\nPaddle allocated memory: {paddle_allocated_mem_after_run / Gb}",
f"\nAvailable KV Cache meomory: {available_kv_cache_memory / Gb}",
f"Profile time: {end_time - start_time}",
)
)
return available_kv_cache_memory # return to caculate the block num in this device