""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import gc import time import paddle from fastdeploy.config import FDConfig from fastdeploy.utils import get_logger, set_random_seed from fastdeploy.worker.dcu_model_runner import DCUModelRunner from fastdeploy.worker.gpu_worker import GpuWorker logger = get_logger("dcu_worker", "dcu_worker.log") class DcuWorker(GpuWorker): """ """ def __init__( self, fd_config: FDConfig, local_rank: int, rank: int, ): super().__init__( fd_config=fd_config, local_rank=local_rank, rank=rank, ) pass def init_device(self): """ Initialize device and construct model runner """ self.max_chips_per_node = 8 if self.device_config.device_type == "cuda" and paddle.device.is_compiled_with_cuda(): # Set evironment variable self.device_ids = self.parallel_config.device_ids.split(",") self.device = f"gpu:{self.local_rank % self.max_chips_per_node}" paddle.device.set_device(self.device) paddle.set_default_dtype(self.parallel_config.dtype) gc.collect() paddle.device.cuda.empty_cache() if ( self.parallel_config.enable_custom_all_reduce and self.parallel_config.tensor_parallel_size > 1 and paddle.is_compiled_with_cuda() ): from fastdeploy.distributed.communication import use_custom_allreduce use_custom_allreduce() else: raise RuntimeError(f"Not support device type: {self.device_config.device}") set_random_seed(self.fd_config.model_config.seed) # Construct model runner self.model_runner: DCUModelRunner = DCUModelRunner( fd_config=self.fd_config, device=self.device, device_id=self.device_ids[self.local_rank % self.max_chips_per_node], rank=self.rank, local_rank=self.local_rank, ) def determine_available_memory(self) -> int: """ Profiles the peak memory usage of the model to determine how much memory can be used for KV cache without OOMs. The engine will first conduct a profiling of the existing memory usage. Then, it calculate the maximum possible number of GPU and CPU blocks that can be allocated with the remaining free memory. Tip: You may limit the usage of GPU memory by adjusting the `gpu_memory_utilization` parameter. """ # 1. Record memory state before profile run Gb = 1024**3 start_time = time.perf_counter() paddle.device.cuda.reset_max_memory_reserved(self.local_rank) paddle.device.cuda.reset_max_memory_allocated(self.local_rank) paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(self.local_rank) paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(self.local_rank) # not reserved total_gpu_memory = paddle.device.cuda.get_device_properties(self.local_rank).total_memory before_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank) logger.info( ( "Before running the profile, the memory usage info is as follows:", f"\nDevice Total memory: {total_gpu_memory / Gb}", f"\nDevice used memory: {before_used_gpu_memory / Gb}", f"\nPaddle reserved memory: {paddle_reserved_mem_before_run / Gb}", f"\nPaddle allocated memory: {paddle_allocated_mem_before_run / Gb}", ) ) # 2. Profile run self.model_runner.profile_run() # 3. Statistical memory information paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(self.local_rank) paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(self.local_rank) after_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank) # v0 worker model_block_memory_used = self.cal_theortical_kvcache() paddle.device.cuda.empty_cache() paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run available_kv_cache_memory = ( total_gpu_memory * self.cache_config.gpu_memory_utilization - after_used_gpu_memory - paddle_peak_increase ) available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num end_time = time.perf_counter() logger.info( ( "After running the profile, the memory usage info is as follows:", f"\nDevice Total memory: {total_gpu_memory / Gb}", f"\nDevice used memory: {after_used_gpu_memory / Gb}", f"\nPaddle reserved memory: {paddle_reserved_mem_after_run / Gb}", f"\nPaddle allocated memory: {paddle_allocated_mem_after_run / Gb}", f"\nAvailable KV Cache meomory: {available_kv_cache_memory / Gb}", f"Profile time: {end_time - start_time}", ) ) return available_kv_cache_memory # return to caculate the block num in this device