Files
FastDeploy/examples/vision/detection/yolov5/quantize/python/README.md
yunyaoXYY dc2dad62a4 [Bug Fix] Fix bugs when deploy quantized YOLOv5/v6/v7 model. (#729)
* Improve the usage of fastdeploy tools

* Fix quantized YOLOv5,v6 and v7 model deployment
2022-11-28 19:19:37 +08:00

32 lines
1.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# YOLOv5s量化模型 Python部署示例
本目录下提供的`infer.py`,可以帮助用户快速完成YOLOv5量化模型在CPU/GPU上的部署推理加速.
## 部署准备
### FastDeploy环境准备
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
## 以量化后的YOLOv5s模型为例, 进行部署
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov5/quantize/python
#下载FastDeloy提供的yolov5s量化模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_quant.tar
tar -xvf yolov5s_quant.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# 在CPU上使用ONNX Runtime推理量化模型
python infer.py --model yolov5s_quant --image 000000014439.jpg --device cpu --backend ort
# 在GPU上使用TensorRT推理量化模型
python infer.py --model yolov5s_quant --image 000000014439.jpg --device gpu --backend trt
# 在GPU上使用Paddle-TensorRT推理量化模型
python infer.py --model yolov5s_quant --image 000000014439.jpg --device gpu --backend pptrt
```