Files
FastDeploy/examples/vision/facedet/scrfd/rknpu2/cpp/infer.cc
Zheng_Bicheng dc13eb7049 [RKNPU2] Update quantitative model (#879)
* 对RKNPU2后端进行修改,当模型为非量化模型时,不在NPU执行normalize操作,当模型为量化模型时,在NUP上执行normalize操作

* 更新RKNPU2框架,输出数据的数据类型统一返回fp32类型

* 更新scrfd,拆分disable_normalize和disable_permute

* 更新scrfd代码,支持量化

* 更新scrfd python example代码

* 更新模型转换代码,支持量化模型

* 更新文档

* 按照要求修改

* 按照要求修改

* 修正模型转换文档

* 更新一下转换脚本
2022-12-19 13:58:43 +08:00

86 lines
2.4 KiB
C++

#include <iostream>
#include <string>
#include "fastdeploy/vision.h"
void ONNXInfer(const std::string& model_dir, const std::string& image_file) {
std::string model_file = model_dir + "/scrfd_500m_bnkps_shape640x640.onnx";
std::string params_file;
auto option = fastdeploy::RuntimeOption();
option.UseCpu();
auto format = fastdeploy::ModelFormat::ONNX;
auto model = fastdeploy::vision::facedet::SCRFD(
model_file, params_file, option, format);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
fastdeploy::TimeCounter tc;
tc.Start();
auto im = cv::imread(image_file);
fastdeploy::vision::FaceDetectionResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
auto vis_im = fastdeploy::vision::Visualize::VisFaceDetection(im, res);
tc.End();
tc.PrintInfo("SCRFD in ONNX");
std::cout << res.Str() << std::endl;
cv::imwrite("infer_onnx.jpg", vis_im);
std::cout
<< "Visualized result saved in ./infer_onnx.jpg"
<< std::endl;
}
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
std::string model_file = model_dir + "/scrfd_500m_bnkps_shape640x640_rk3588.rknn";
std::string params_file;
auto option = fastdeploy::RuntimeOption();
option.UseRKNPU2();
auto format = fastdeploy::ModelFormat::RKNN;
auto model = fastdeploy::vision::facedet::SCRFD(model_file, params_file, option, format);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
model.DisableNormalize();
model.DisablePermute();
fastdeploy::TimeCounter tc;
tc.Start();
auto im = cv::imread(image_file);
fastdeploy::vision::FaceDetectionResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
auto vis_im = fastdeploy::vision::VisFaceDetection(im, res);
tc.End();
tc.PrintInfo("SCRFD in RKNN");
std::cout << res.Str() << std::endl;
cv::imwrite("infer_rknn.jpg", vis_im);
std::cout
<< "Visualized result saved in ./infer_rknn.jpg"
<< std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_model ./picodet_model_dir ./test.jpeg"
<< std::endl;
return -1;
}
RKNPU2Infer(argv[1], argv[2]);
ONNXInfer(argv[1], argv[2]);
return 0;
}