mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* 对RKNPU2后端进行修改,当模型为非量化模型时,不在NPU执行normalize操作,当模型为量化模型时,在NUP上执行normalize操作 * 更新RKNPU2框架,输出数据的数据类型统一返回fp32类型 * 更新scrfd,拆分disable_normalize和disable_permute * 更新scrfd代码,支持量化 * 更新scrfd python example代码 * 更新模型转换代码,支持量化模型 * 更新文档 * 按照要求修改 * 按照要求修改 * 修正模型转换文档 * 更新一下转换脚本
86 lines
2.4 KiB
C++
86 lines
2.4 KiB
C++
#include <iostream>
|
|
#include <string>
|
|
#include "fastdeploy/vision.h"
|
|
|
|
void ONNXInfer(const std::string& model_dir, const std::string& image_file) {
|
|
std::string model_file = model_dir + "/scrfd_500m_bnkps_shape640x640.onnx";
|
|
std::string params_file;
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseCpu();
|
|
auto format = fastdeploy::ModelFormat::ONNX;
|
|
|
|
auto model = fastdeploy::vision::facedet::SCRFD(
|
|
model_file, params_file, option, format);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
fastdeploy::TimeCounter tc;
|
|
tc.Start();
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::FaceDetectionResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::Visualize::VisFaceDetection(im, res);
|
|
tc.End();
|
|
tc.PrintInfo("SCRFD in ONNX");
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
cv::imwrite("infer_onnx.jpg", vis_im);
|
|
std::cout
|
|
<< "Visualized result saved in ./infer_onnx.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
|
|
std::string model_file = model_dir + "/scrfd_500m_bnkps_shape640x640_rk3588.rknn";
|
|
std::string params_file;
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseRKNPU2();
|
|
auto format = fastdeploy::ModelFormat::RKNN;
|
|
|
|
auto model = fastdeploy::vision::facedet::SCRFD(model_file, params_file, option, format);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
model.DisableNormalize();
|
|
model.DisablePermute();
|
|
|
|
fastdeploy::TimeCounter tc;
|
|
tc.Start();
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::FaceDetectionResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::VisFaceDetection(im, res);
|
|
tc.End();
|
|
tc.PrintInfo("SCRFD in RKNN");
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
cv::imwrite("infer_rknn.jpg", vis_im);
|
|
std::cout
|
|
<< "Visualized result saved in ./infer_rknn.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 3) {
|
|
std::cout
|
|
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
|
"e.g ./infer_model ./picodet_model_dir ./test.jpeg"
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
RKNPU2Infer(argv[1], argv[2]);
|
|
ONNXInfer(argv[1], argv[2]);
|
|
return 0;
|
|
} |