Files
FastDeploy/examples/vision/facedet/scrfd/rknpu2/cpp
Zheng_Bicheng dc13eb7049 [RKNPU2] Update quantitative model (#879)
* 对RKNPU2后端进行修改,当模型为非量化模型时,不在NPU执行normalize操作,当模型为量化模型时,在NUP上执行normalize操作

* 更新RKNPU2框架,输出数据的数据类型统一返回fp32类型

* 更新scrfd,拆分disable_normalize和disable_permute

* 更新scrfd代码,支持量化

* 更新scrfd python example代码

* 更新模型转换代码,支持量化模型

* 更新文档

* 按照要求修改

* 按照要求修改

* 修正模型转换文档

* 更新一下转换脚本
2022-12-19 13:58:43 +08:00
..

SCRFD C++部署示例

本目录下提供infer.cc快速完成SCRFD在NPU加速部署的示例。

在部署前,需确认以下两个步骤:

  1. 软硬件环境满足要求
  2. 根据开发环境下载预编译部署库或者从头编译FastDeploy仓库

以上步骤请参考RK2代NPU部署库编译实现

生成基本目录文件

该例程由以下几个部分组成

.
├── CMakeLists.txt
├── build  # 编译文件夹
├── image  # 存放图片的文件夹
├── infer.cc
├── model  # 存放模型文件的文件夹
└── thirdpartys  # 存放sdk的文件夹

首先需要先生成目录结构

mkdir build
mkdir images
mkdir model
mkdir thirdpartys

编译

编译并拷贝SDK到thirdpartys文件夹

请参考RK2代NPU部署库编译仓库编译SDK编译完成后将在build目录下生成 fastdeploy-0.7.0目录请移动它至thirdpartys目录下.

拷贝模型文件至model文件夹

请参考SCRFD模型转换文档转换SCRFD ONNX模型到RKNN模型,再将RKNN模型移动到model文件夹。

准备测试图片至image文件夹

wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
cp test_lite_face_detector_3.jpg ./images

编译example

cd build
cmake ..
make -j8
make install

运行例程

cd ./build/install
export LD_LIBRARY_PATH=${PWD}/lib:${LD_LIBRARY_PATH}
./rknpu_test

运行完成可视化结果如下图所示