Files
FastDeploy/examples/vision/faceid/insightface/python/README.md
DefTruth beddcba900 [docs][win] add windows c++ sdk demo to examples (#136)
* [docs] format docs with markdown with language tags

* [docs][win] add windows c++ sdk demo

* [docs][win] add windows c++ sdk demo to examples

* [docs][api] update runtime_option docs
2022-08-22 10:53:00 +08:00

100 lines
4.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# InsightFace Python部署示例
本目录下提供infer_xxx.py快速完成InsighFace模型包括ArcFace\CosFace\VPL\Partial_FC在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/the%20software%20and%20hardware%20requirements.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/quick_start)
以ArcFace为例子, 提供`infer_arcface.py`快速完成ArcFace在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/faceid/insightface/python/
#下载ArcFace模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG
# CPU推理
python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device cpu
# GPU推理
python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device gpu
# GPU上使用TensorRT推理
python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<div width="700">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
</div>
```bash
Prediction Done!
--- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
--- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
--- [Face 2]:FaceRecognitionResult: [Dim(512), Min(-3.243411), Max(3.875866), Mean(-0.030682)]
Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388
```
## InsightFace Python接口
```python
fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
fastdeploy.vision.faceid.VPL(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
```
ArcFace模型加载和初始化其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(Frontend): 模型格式默认为ONNX
### predict函数
> ```python
> ArcFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **image_data**(np.ndarray): 输入数据注意需为HWCBGR格式
> > * **conf_threshold**(float): 检测框置信度过滤阈值
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
> **返回**
>
> > 返回`fastdeploy.vision.FaceRecognitionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[112, 112]
> > * **alpha**(list[float]): 预处理归一化的alpha值计算公式为`x'=x*alpha+beta`alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
> > * **beta**(list[float]): 预处理归一化的beta值计算公式为`x'=x*alpha+beta`beta默认为[-1.f, -1.f, -1.f]
> > * **swap_rb**(bool): 预处理是否将BGR转换成RGB默认True
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化默认False
## 其它文档
- [InsightFace 模型介绍](..)
- [InsightFace C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)