mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add PaddleOCR Support * Add PaddleOCR Support * Add PaddleOCRv3 Support * Add PaddleOCRv3 Support * Update README.md * Update README.md * Update README.md * Update README.md * Add PaddleOCRv3 Support * Add PaddleOCRv3 Supports * Add PaddleOCRv3 Suport * Fix Rec diff * Remove useless functions * Remove useless comments * Add PaddleOCRv2 Support * Add PaddleOCRv3 & PaddleOCRv2 Support * remove useless parameters * Add utils of sorting det boxes * Fix code naming convention * Fix code naming convention * Fix code naming convention * Fix bug in the Classify process * Imporve OCR Readme * Fix diff in Cls model * Update Model Download Link in Readme * Fix diff in PPOCRv2 * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Fix conflict * Add readme for OCRResult * Improve OCR readme * Add OCRResult readme * Improve OCR readme * Improve OCR readme * Add Model Quantization Demo * Fix Model Quantization Readme * Fix Model Quantization Readme * Add the function to do PTQ quantization * Improve quant tools readme * Improve quant tool readme * Improve quant tool readme * Add PaddleInference-GPU for OCR Rec model * Add QAT method to fastdeploy-quantization tool * Remove examples/slim for now * Move configs folder * Add Quantization Support for Classification Model * Imporve ways of importing preprocess * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Improve Quantization configs and readme * Add support for multi-inputs model * Add backends and params file for YOLOv7 * Add quantized model deployment support for YOLO series * Fix YOLOv5 quantize readme * Fix YOLO quantize readme * Fix YOLO quantize readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Fix bug, change Fronted to ModelFormat * Change Fronted to ModelFormat * Add examples to deploy quantized paddleclas models * Fix readme * Add quantize Readme * Add quantize Readme * Add quantize Readme * Modify readme of quantization tools * Modify readme of quantization tools * Improve quantization tools readme * Improve quantization readme * Improve PaddleClas quantized model deployment readme * Add PPYOLOE-l quantized deployment examples * Improve quantization tools readme
25 lines
1.6 KiB
Markdown
25 lines
1.6 KiB
Markdown
# YOLOv5量化模型部署
|
||
FastDeploy已支持部署量化模型,并提供一键模型量化的工具.
|
||
用户可以使用一键模型量化工具,自行对模型量化后部署, 也可以直接下载FastDeploy提供的量化模型进行部署.
|
||
|
||
## FastDeploy一键模型量化工具
|
||
FastDeploy 提供了一键量化工具, 能够简单地通过输入一个配置文件, 对模型进行量化.
|
||
详细教程请见: [一键模型量化工具](../../../../../tools/quantization/)
|
||
|
||
## 下载量化完成的YOLOv5s模型
|
||
用户也可以直接下载下表中的量化模型进行部署.
|
||
| 模型 |推理后端 |部署硬件 | FP32推理时延 | INT8推理时延 | 加速比 | FP32 mAP | INT8 mAP |量化方式 |
|
||
| ------------------- | -----------------|-----------| -------- |-------- |-------- | --------- |-------- |----- |
|
||
| [YOLOv5s](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_quant.tar) | TensorRT | GPU | 14.13 | 11.22 | 1.26 | 37.6 | 36.6 | 量化蒸馏训练 |
|
||
| [YOLOv5s](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_quant.tar) | Paddle Inference | CPU | 226.36 | 152.27 | 1.48 |37.6 | 36.8 |量化蒸馏训练 |
|
||
|
||
上表中的数据, 为模型量化前后,在FastDeploy部署的端到端推理性能.
|
||
- 测试图片为COCO val2017中的图片.
|
||
- 推理时延为端到端推理(包含前后处理)的平均时延, 单位是毫秒.
|
||
- CPU为Intel(R) Xeon(R) Gold 6271C, GPU为Tesla T4, TensorRT版本8.4.15, 所有测试中固定CPU线程数为1.
|
||
|
||
## 详细部署文档
|
||
|
||
- [Python部署](python)
|
||
- [C++部署](cpp)
|