mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend
132 lines
4.2 KiB
C++
132 lines
4.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/ocr/ppocr/rec_preprocessor.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
|
#include "fastdeploy/function/concat.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace ocr {
|
|
|
|
void OcrRecognizerResizeImage(FDMat* mat, float max_wh_ratio,
|
|
const std::vector<int>& rec_image_shape, bool static_shape) {
|
|
int img_h, img_w;
|
|
img_h = rec_image_shape[1];
|
|
img_w = rec_image_shape[2];
|
|
|
|
if (!static_shape) {
|
|
|
|
img_w = int(img_h * max_wh_ratio);
|
|
float ratio = float(mat->Width()) / float(mat->Height());
|
|
|
|
int resize_w;
|
|
if (ceilf(img_h * ratio) > img_w) {
|
|
resize_w = img_w;
|
|
} else {
|
|
resize_w = int(ceilf(img_h * ratio));
|
|
}
|
|
Resize::Run(mat, resize_w, img_h);
|
|
Pad::Run(mat, 0, 0, 0, int(img_w - mat->Width()), {127, 127, 127});
|
|
|
|
} else {
|
|
if (mat->Width() >= img_w) {
|
|
Resize::Run(mat, img_w, img_h); // Reszie W to 320
|
|
} else {
|
|
Resize::Run(mat, mat->Width(), img_h);
|
|
Pad::Run(mat, 0, 0, 0, int(img_w - mat->Width()), {127, 127, 127});
|
|
// Pad to 320
|
|
}
|
|
}
|
|
}
|
|
|
|
void OcrRecognizerResizeImageOnAscend(FDMat* mat,
|
|
const std::vector<int>& rec_image_shape) {
|
|
|
|
int img_h, img_w;
|
|
img_h = rec_image_shape[1];
|
|
img_w = rec_image_shape[2];
|
|
|
|
if (mat->Width() >= img_w) {
|
|
Resize::Run(mat, img_w, img_h); // Reszie W to 320
|
|
} else {
|
|
Resize::Run(mat, mat->Width(), img_h);
|
|
Pad::Run(mat, 0, 0, 0, int(img_w - mat->Width()), {0,0,0});
|
|
// Pad to 320
|
|
}
|
|
}
|
|
|
|
|
|
bool RecognizerPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs) {
|
|
return Run(images, outputs, 0, images->size(), {});
|
|
}
|
|
|
|
bool RecognizerPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
|
size_t start_index, size_t end_index, const std::vector<int>& indices) {
|
|
if (images->size() == 0 || end_index <= start_index || end_index > images->size()) {
|
|
FDERROR << "images->size() or index error. Correct is: 0 <= start_index < end_index <= images->size()" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
int img_h = rec_image_shape_[1];
|
|
int img_w = rec_image_shape_[2];
|
|
float max_wh_ratio = img_w * 1.0 / img_h;
|
|
float ori_wh_ratio;
|
|
|
|
for (size_t i = start_index; i < end_index; ++i) {
|
|
size_t real_index = i;
|
|
if (indices.size() != 0) {
|
|
real_index = indices[i];
|
|
}
|
|
FDMat* mat = &(images->at(real_index));
|
|
ori_wh_ratio = mat->Width() * 1.0 / mat->Height();
|
|
max_wh_ratio = std::max(max_wh_ratio, ori_wh_ratio);
|
|
}
|
|
|
|
for (size_t i = start_index; i < end_index; ++i) {
|
|
size_t real_index = i;
|
|
if (indices.size() != 0) {
|
|
real_index = indices[i];
|
|
}
|
|
FDMat* mat = &(images->at(real_index));
|
|
OcrRecognizerResizeImage(mat, max_wh_ratio, rec_image_shape_, static_shape_);
|
|
NormalizeAndPermute::Run(mat, mean_, scale_, is_scale_);
|
|
}
|
|
// Only have 1 output Tensor.
|
|
outputs->resize(1);
|
|
size_t tensor_size = end_index-start_index;
|
|
// Concat all the preprocessed data to a batch tensor
|
|
std::vector<FDTensor> tensors(tensor_size);
|
|
for (size_t i = 0; i < tensor_size; ++i) {
|
|
size_t real_index = i + start_index;
|
|
if (indices.size() != 0) {
|
|
real_index = indices[i + start_index];
|
|
}
|
|
|
|
(*images)[real_index].ShareWithTensor(&(tensors[i]));
|
|
tensors[i].ExpandDim(0);
|
|
}
|
|
if (tensors.size() == 1) {
|
|
(*outputs)[0] = std::move(tensors[0]);
|
|
} else {
|
|
function::Concat(tensors, &((*outputs)[0]), 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|