// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/ocr/ppocr/rec_preprocessor.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h" #include "fastdeploy/function/concat.h" namespace fastdeploy { namespace vision { namespace ocr { void OcrRecognizerResizeImage(FDMat* mat, float max_wh_ratio, const std::vector& rec_image_shape, bool static_shape) { int img_h, img_w; img_h = rec_image_shape[1]; img_w = rec_image_shape[2]; if (!static_shape) { img_w = int(img_h * max_wh_ratio); float ratio = float(mat->Width()) / float(mat->Height()); int resize_w; if (ceilf(img_h * ratio) > img_w) { resize_w = img_w; } else { resize_w = int(ceilf(img_h * ratio)); } Resize::Run(mat, resize_w, img_h); Pad::Run(mat, 0, 0, 0, int(img_w - mat->Width()), {127, 127, 127}); } else { if (mat->Width() >= img_w) { Resize::Run(mat, img_w, img_h); // Reszie W to 320 } else { Resize::Run(mat, mat->Width(), img_h); Pad::Run(mat, 0, 0, 0, int(img_w - mat->Width()), {127, 127, 127}); // Pad to 320 } } } void OcrRecognizerResizeImageOnAscend(FDMat* mat, const std::vector& rec_image_shape) { int img_h, img_w; img_h = rec_image_shape[1]; img_w = rec_image_shape[2]; if (mat->Width() >= img_w) { Resize::Run(mat, img_w, img_h); // Reszie W to 320 } else { Resize::Run(mat, mat->Width(), img_h); Pad::Run(mat, 0, 0, 0, int(img_w - mat->Width()), {0,0,0}); // Pad to 320 } } bool RecognizerPreprocessor::Run(std::vector* images, std::vector* outputs) { return Run(images, outputs, 0, images->size(), {}); } bool RecognizerPreprocessor::Run(std::vector* images, std::vector* outputs, size_t start_index, size_t end_index, const std::vector& indices) { if (images->size() == 0 || end_index <= start_index || end_index > images->size()) { FDERROR << "images->size() or index error. Correct is: 0 <= start_index < end_index <= images->size()" << std::endl; return false; } int img_h = rec_image_shape_[1]; int img_w = rec_image_shape_[2]; float max_wh_ratio = img_w * 1.0 / img_h; float ori_wh_ratio; for (size_t i = start_index; i < end_index; ++i) { size_t real_index = i; if (indices.size() != 0) { real_index = indices[i]; } FDMat* mat = &(images->at(real_index)); ori_wh_ratio = mat->Width() * 1.0 / mat->Height(); max_wh_ratio = std::max(max_wh_ratio, ori_wh_ratio); } for (size_t i = start_index; i < end_index; ++i) { size_t real_index = i; if (indices.size() != 0) { real_index = indices[i]; } FDMat* mat = &(images->at(real_index)); OcrRecognizerResizeImage(mat, max_wh_ratio, rec_image_shape_, static_shape_); NormalizeAndPermute::Run(mat, mean_, scale_, is_scale_); } // Only have 1 output Tensor. outputs->resize(1); size_t tensor_size = end_index-start_index; // Concat all the preprocessed data to a batch tensor std::vector tensors(tensor_size); for (size_t i = 0; i < tensor_size; ++i) { size_t real_index = i + start_index; if (indices.size() != 0) { real_index = indices[i + start_index]; } (*images)[real_index].ShareWithTensor(&(tensors[i])); tensors[i].ExpandDim(0); } if (tensors.size() == 1) { (*outputs)[0] = std::move(tensors[0]); } else { function::Concat(tensors, &((*outputs)[0]), 0); } return true; } } // namespace ocr } // namespace vision } // namespace fastdeploy