mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-27 02:20:31 +08:00
* add ocr serving example * 1 1 * Add files via upload * Update README.md * Delete ocr_pipeline.png * Add files via upload * Delete ocr_pipeline.png * Add files via upload * 1 1 * 1 1 * Update README.md * 1 1 * fix codestyle * fix codestyle Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: heliqi <1101791222@qq.com>
89 lines
3.3 KiB
Markdown
89 lines
3.3 KiB
Markdown
# PP-OCR服务化部署示例
|
||
|
||
## 介绍
|
||
本文介绍了使用FastDeploy搭建OCR文字识别服务的方法.
|
||
|
||
服务端必须在docker内启动,而客户端不是必须在docker容器内.
|
||
|
||
**本文所在路径($PWD)下的models里包含模型的配置和代码(服务端会加载模型和代码以启动服务), 需要将其映射到docker中使用.**
|
||
|
||
OCR由det(检测)、cls(分类)和rec(识别)三个模型组成.
|
||
|
||
服务化部署串联的示意图如下图所示,其中`pp_ocr`串联了`det_preprocess`、`det_runtime`和`det_postprocess`,`cls_pp`串联了`cls_runtime`和`cls_postprocess`,`rec_pp`串联了`rec_runtime`和`rec_postprocess`.
|
||
|
||
特别的是,在`det_postprocess`中会多次调用`cls_pp`和`rec_pp`服务,来实现对检测结果(多个框)进行分类和识别,,最后返回给用户最终的识别结果。
|
||
|
||
<p align="center">
|
||
<br>
|
||
<img src='./ppocr.png'">
|
||
<br>
|
||
<p>
|
||
|
||
## 使用
|
||
### 1. 服务端
|
||
#### 1.1 Docker
|
||
```bash
|
||
# 下载仓库代码
|
||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||
cd FastDeploy/examples/vision/ocr/PP-OCRv3/serving/
|
||
|
||
# 下载模型,图片和字典文件
|
||
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
|
||
tar xvf ch_PP-OCRv3_det_infer.tar && mv ch_PP-OCRv3_det_infer 1
|
||
mv 1/inference.pdiparams 1/model.pdiparams && mv 1/inference.pdmodel 1/model.pdmodel
|
||
mv 1 models/det_runtime/ && rm -rf ch_PP-OCRv3_det_infer.tar
|
||
|
||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
|
||
tar xvf ch_ppocr_mobile_v2.0_cls_infer.tar && mv ch_ppocr_mobile_v2.0_cls_infer 1
|
||
mv 1/inference.pdiparams 1/model.pdiparams && mv 1/inference.pdmodel 1/model.pdmodel
|
||
mv 1 models/cls_runtime/ && rm -rf ch_ppocr_mobile_v2.0_cls_infer.tar
|
||
|
||
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
|
||
tar xvf ch_PP-OCRv3_rec_infer.tar && mv ch_PP-OCRv3_rec_infer 1
|
||
mv 1/inference.pdiparams 1/model.pdiparams && mv 1/inference.pdmodel 1/model.pdmodel
|
||
mv 1 models/rec_runtime/ && rm -rf ch_PP-OCRv3_rec_infer.tar
|
||
|
||
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
|
||
mv ppocr_keys_v1.txt models/rec_postprocess/1/
|
||
|
||
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
|
||
|
||
|
||
docker pull paddlepaddle/fastdeploy:0.6.0-gpu-cuda11.4-trt8.4-21.10
|
||
docker run -dit --net=host --name fastdeploy --shm-size="1g" -v $PWD:/ocr_serving paddlepaddle/fastdeploy:0.6.0-gpu-cuda11.4-trt8.4-21.10 bash
|
||
docker exec -it -u root fastdeploy bash
|
||
```
|
||
|
||
#### 1.2 安装(在docker内)
|
||
```bash
|
||
ldconfig
|
||
apt-get install libgl1
|
||
```
|
||
|
||
#### 1.3 启动服务端(在docker内)
|
||
```bash
|
||
fastdeployserver --model-repository=/ocr_serving/models
|
||
```
|
||
|
||
参数:
|
||
- `model-repository`(required): 整套模型streaming_pp_tts存放的路径.
|
||
- `http-port`(optional): HTTP服务的端口号. 默认: `8000`. 本示例中未使用该端口.
|
||
- `grpc-port`(optional): GRPC服务的端口号. 默认: `8001`.
|
||
- `metrics-port`(optional): 服务端指标的端口号. 默认: `8002`. 本示例中未使用该端口.
|
||
|
||
|
||
### 2. 客户端
|
||
#### 2.1 安装
|
||
```bash
|
||
pip3 install tritonclient[all]
|
||
```
|
||
|
||
#### 2.2 发送请求
|
||
```bash
|
||
python3 client.py
|
||
```
|
||
|
||
## 配置修改
|
||
|
||
当前默认配置在GPU上运行, 如果要在CPU或其他推理引擎上运行。 需要修改`models/runtime/config.pbtxt`中配置,详情请参考[配置文档](../../../../../serving/docs/zh_CN/model_configuration.md)
|