Files
FastDeploy/benchmark/cpp/benchmark_ppocr_det.cc
WJJ1995 d3845eb4e1 [Benchmark]Compare diff for OCR (#1415)
* avoid mem copy for cpp benchmark

* set CMAKE_BUILD_TYPE to Release

* Add SegmentationDiff

* change pointer to reference

* fixed bug

* cast uint8 to int32

* Add diff compare for OCR

* Add diff compare for OCR

* rm ppocr pipeline

* Add yolov5 diff compare

* Add yolov5 diff compare

* deal with comments

* deal with comments

* fixed bug

* fixed bug
2023-02-23 18:57:39 +08:00

63 lines
2.5 KiB
C++

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
namespace vision = fastdeploy::vision;
namespace benchmark = fastdeploy::benchmark;
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
// Detection Model
auto det_model_file = FLAGS_model + sep + "inference.pdmodel";
auto det_params_file = FLAGS_model + sep + "inference.pdiparams";
if (FLAGS_backend == "paddle_trt") {
option.paddle_infer_option.collect_trt_shape = true;
}
if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") {
option.trt_option.SetShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
{1, 3, 960, 960});
}
auto model_ppocr_det =
vision::ocr::DBDetector(det_model_file, det_params_file, option);
std::vector<std::array<int, 8>> res;
// Run once at least
model_ppocr_det.Predict(im, &res);
// 1. Test result diff
std::cout << "=============== Test result diff =================\n";
// Save result to -> disk.
std::string ppocr_det_result_path = "ppocr_det_result.txt";
benchmark::ResultManager::SaveOCRDetResult(res, ppocr_det_result_path);
// Load result from <- disk.
std::vector<std::array<int, 8>> res_loaded;
benchmark::ResultManager::LoadOCRDetResult(&res_loaded,
ppocr_det_result_path);
// Calculate diff between two results.
auto ppocr_det_diff =
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
std::cout << "PPOCR Boxes diff: mean=" << ppocr_det_diff.boxes.mean
<< ", max=" << ppocr_det_diff.boxes.max
<< ", min=" << ppocr_det_diff.boxes.min << std::endl;
BENCHMARK_MODEL(model_ppocr_det, model_ppocr_det.Predict(im, &res));
#endif
return 0;
}