// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "flags.h" #include "macros.h" #include "option.h" namespace vision = fastdeploy::vision; namespace benchmark = fastdeploy::benchmark; int main(int argc, char* argv[]) { #if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION) // Initialization auto option = fastdeploy::RuntimeOption(); if (!CreateRuntimeOption(&option, argc, argv, true)) { return -1; } auto im = cv::imread(FLAGS_image); // Detection Model auto det_model_file = FLAGS_model + sep + "inference.pdmodel"; auto det_params_file = FLAGS_model + sep + "inference.pdiparams"; if (FLAGS_backend == "paddle_trt") { option.paddle_infer_option.collect_trt_shape = true; } if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") { option.trt_option.SetShape("x", {1, 3, 64, 64}, {1, 3, 640, 640}, {1, 3, 960, 960}); } auto model_ppocr_det = vision::ocr::DBDetector(det_model_file, det_params_file, option); std::vector> res; // Run once at least model_ppocr_det.Predict(im, &res); // 1. Test result diff std::cout << "=============== Test result diff =================\n"; // Save result to -> disk. std::string ppocr_det_result_path = "ppocr_det_result.txt"; benchmark::ResultManager::SaveOCRDetResult(res, ppocr_det_result_path); // Load result from <- disk. std::vector> res_loaded; benchmark::ResultManager::LoadOCRDetResult(&res_loaded, ppocr_det_result_path); // Calculate diff between two results. auto ppocr_det_diff = benchmark::ResultManager::CalculateDiffStatis(res, res_loaded); std::cout << "PPOCR Boxes diff: mean=" << ppocr_det_diff.boxes.mean << ", max=" << ppocr_det_diff.boxes.max << ", min=" << ppocr_det_diff.boxes.min << std::endl; BENCHMARK_MODEL(model_ppocr_det, model_ppocr_det.Predict(im, &res)); #endif return 0; }