mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test * add rvm support * support rvm model * add rvm demo * fixed bugs * add rvm readme * add TRT support * add trt support * add rvm test * add EXPORT.md * rename export.md * rm poros doxyen * deal with comments * deal with comments * add rvm video_mode note Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
93 lines
3.5 KiB
C++
Executable File
93 lines
3.5 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
/** \brief All image/video matting model APIs are defined inside this namespace
|
|
*
|
|
*/
|
|
namespace matting {
|
|
|
|
/*! @brief RobustVideoMatting model object used when to load a RobustVideoMatting model exported by RobustVideoMatting
|
|
*/
|
|
class FASTDEPLOY_DECL RobustVideoMatting : public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g rvm/rvm_mobilenetv3_fp32.onnx
|
|
* \param[in] params_file Path of parameter file, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
|
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
*/
|
|
RobustVideoMatting(const std::string& model_file,
|
|
const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
|
|
/// Get model's name
|
|
std::string ModelName() const { return "matting/RobustVideoMatting"; }
|
|
|
|
/** \brief Predict the matting result for an input image
|
|
*
|
|
* \param[in] im The input image data, comes from cv::imread()
|
|
* \param[in] result The output matting result will be writen to this structure
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
bool Predict(cv::Mat* im, MattingResult* result);
|
|
|
|
/// Preprocess image size, the default is (1080, 1920)
|
|
std::vector<int> size;
|
|
|
|
/// Whether to open the video mode, if there are some irrelevant pictures, set it to fasle, the default is true // NOLINT
|
|
bool video_mode;
|
|
|
|
private:
|
|
bool Initialize();
|
|
/// Preprocess an input image, and set the preprocessed results to `outputs`
|
|
bool Preprocess(Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<int, 2>>* im_info);
|
|
|
|
/// Postprocess the inferenced results, and set the final result to `result`
|
|
bool Postprocess(std::vector<FDTensor>& infer_result, MattingResult* result,
|
|
const std::map<std::string, std::array<int, 2>>& im_info);
|
|
|
|
/// Init dynamic inputs datas
|
|
std::vector<std::vector<float>> dynamic_inputs_datas_ = {
|
|
{0.0f}, // r1i
|
|
{0.0f}, // r2i
|
|
{0.0f}, // r3i
|
|
{0.0f}, // r4i
|
|
{0.25f}, // downsample_ratio
|
|
};
|
|
|
|
/// Init dynamic inputs dims
|
|
std::vector<std::vector<int64_t>> dynamic_inputs_dims_ = {
|
|
{1, 1, 1, 1}, // r1i
|
|
{1, 1, 1, 1}, // r2i
|
|
{1, 1, 1, 1}, // r3i
|
|
{1, 1, 1, 1}, // r4i
|
|
{1}, // downsample_ratio
|
|
};
|
|
};
|
|
|
|
} // namespace matting
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|