Files
FastDeploy/fastdeploy/vision/matting/contrib/rvm.h
WJJ1995 718698a32a [Model] add RobustVideoMatting model (#400)
* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

* add rvm support

* support rvm model

* add rvm demo

* fixed bugs

* add rvm readme

* add TRT support

* add trt support

* add rvm test

* add EXPORT.md

* rename export.md

* rm poros doxyen

* deal with comments

* deal with comments

* add rvm video_mode note

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2022-10-26 14:30:04 +08:00

93 lines
3.5 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
/** \brief All image/video matting model APIs are defined inside this namespace
*
*/
namespace matting {
/*! @brief RobustVideoMatting model object used when to load a RobustVideoMatting model exported by RobustVideoMatting
*/
class FASTDEPLOY_DECL RobustVideoMatting : public FastDeployModel {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g rvm/rvm_mobilenetv3_fp32.onnx
* \param[in] params_file Path of parameter file, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
RobustVideoMatting(const std::string& model_file,
const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
/// Get model's name
std::string ModelName() const { return "matting/RobustVideoMatting"; }
/** \brief Predict the matting result for an input image
*
* \param[in] im The input image data, comes from cv::imread()
* \param[in] result The output matting result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
bool Predict(cv::Mat* im, MattingResult* result);
/// Preprocess image size, the default is (1080, 1920)
std::vector<int> size;
/// Whether to open the video mode, if there are some irrelevant pictures, set it to fasle, the default is true // NOLINT
bool video_mode;
private:
bool Initialize();
/// Preprocess an input image, and set the preprocessed results to `outputs`
bool Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<int, 2>>* im_info);
/// Postprocess the inferenced results, and set the final result to `result`
bool Postprocess(std::vector<FDTensor>& infer_result, MattingResult* result,
const std::map<std::string, std::array<int, 2>>& im_info);
/// Init dynamic inputs datas
std::vector<std::vector<float>> dynamic_inputs_datas_ = {
{0.0f}, // r1i
{0.0f}, // r2i
{0.0f}, // r3i
{0.0f}, // r4i
{0.25f}, // downsample_ratio
};
/// Init dynamic inputs dims
std::vector<std::vector<int64_t>> dynamic_inputs_dims_ = {
{1, 1, 1, 1}, // r1i
{1, 1, 1, 1}, // r2i
{1, 1, 1, 1}, // r3i
{1, 1, 1, 1}, // r4i
{1}, // downsample_ratio
};
};
} // namespace matting
} // namespace vision
} // namespace fastdeploy