// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { /** \brief All image/video matting model APIs are defined inside this namespace * */ namespace matting { /*! @brief RobustVideoMatting model object used when to load a RobustVideoMatting model exported by RobustVideoMatting */ class FASTDEPLOY_DECL RobustVideoMatting : public FastDeployModel { public: /** \brief Set path of model file and configuration file, and the configuration of runtime * * \param[in] model_file Path of model file, e.g rvm/rvm_mobilenetv3_fp32.onnx * \param[in] params_file Path of parameter file, if the model format is ONNX, this parameter will be ignored * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends` * \param[in] model_format Model format of the loaded model, default is ONNX format */ RobustVideoMatting(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX); /// Get model's name std::string ModelName() const { return "matting/RobustVideoMatting"; } /** \brief Predict the matting result for an input image * * \param[in] im The input image data, comes from cv::imread() * \param[in] result The output matting result will be writen to this structure * \return true if the prediction successed, otherwise false */ bool Predict(cv::Mat* im, MattingResult* result); /// Preprocess image size, the default is (1080, 1920) std::vector size; /// Whether to open the video mode, if there are some irrelevant pictures, set it to fasle, the default is true // NOLINT bool video_mode; private: bool Initialize(); /// Preprocess an input image, and set the preprocessed results to `outputs` bool Preprocess(Mat* mat, FDTensor* output, std::map>* im_info); /// Postprocess the inferenced results, and set the final result to `result` bool Postprocess(std::vector& infer_result, MattingResult* result, const std::map>& im_info); /// Init dynamic inputs datas std::vector> dynamic_inputs_datas_ = { {0.0f}, // r1i {0.0f}, // r2i {0.0f}, // r3i {0.0f}, // r4i {0.25f}, // downsample_ratio }; /// Init dynamic inputs dims std::vector> dynamic_inputs_dims_ = { {1, 1, 1, 1}, // r1i {1, 1, 1, 1}, // r2i {1, 1, 1, 1}, // r3i {1, 1, 1, 1}, // r4i {1}, // downsample_ratio }; }; } // namespace matting } // namespace vision } // namespace fastdeploy