mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* [Android] Add Android build docs and demo (#26) * [Backend] Add override flag to lite backend * [Docs] Add Android C++ SDK build docs * [Doc] fix android_build_docs typos * Update CMakeLists.txt * Update android.md * [Doc] Add PicoDet Android demo docs * [Doc] Update PicoDet Andorid demo docs * [Doc] Update PaddleClasModel Android demo docs * [Doc] Update fastdeploy android jni docs * [Doc] Update fastdeploy android jni usage docs * [Android] init fastdeploy android jar package * [Backend] support int8 option for lite backend * [Model] add Backend::Lite to paddle model * [Backend] use CopyFromCpu for lite backend. * [Android] package jni srcs and java api into aar * Update infer.cc * Update infer.cc * [Android] Update package build.gradle * [Android] Update android app examples * [Android] update android detection app
137 lines
4.4 KiB
C++
137 lines
4.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/faceid/contrib/insightface_rec.h"
|
|
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace faceid {
|
|
|
|
InsightFaceRecognitionModel::InsightFaceRecognitionModel(
|
|
const std::string& model_file, const std::string& params_file,
|
|
const RuntimeOption& custom_option, const ModelFormat& model_format) {
|
|
if (model_format == ModelFormat::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool InsightFaceRecognitionModel::Initialize() {
|
|
// parameters for preprocess
|
|
size = {112, 112};
|
|
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
swap_rb = true;
|
|
l2_normalize = false;
|
|
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool InsightFaceRecognitionModel::Preprocess(Mat* mat, FDTensor* output) {
|
|
// face recognition model's preprocess steps in insightface
|
|
// reference: insightface/recognition/arcface_torch/inference.py
|
|
// 1. Resize
|
|
// 2. BGR2RGB
|
|
// 3. Convert(opencv style) or Normalize
|
|
// 4. HWC2CHW
|
|
int resize_w = size[0];
|
|
int resize_h = size[1];
|
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
|
Resize::Run(mat, resize_w, resize_h);
|
|
}
|
|
if (swap_rb) {
|
|
BGR2RGB::Run(mat);
|
|
}
|
|
|
|
Convert::Run(mat, alpha, beta);
|
|
HWC2CHW::Run(mat);
|
|
Cast::Run(mat, "float");
|
|
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
|
return true;
|
|
}
|
|
|
|
bool InsightFaceRecognitionModel::Postprocess(
|
|
std::vector<FDTensor>& infer_result, FaceRecognitionResult* result) {
|
|
FDASSERT((infer_result.size() == 1),
|
|
"The default number of output tensor must be 1 according to "
|
|
"insightface.");
|
|
FDTensor& embedding_tensor = infer_result.at(0);
|
|
FDASSERT((embedding_tensor.shape[0] == 1), "Only support batch =1 now.");
|
|
if (embedding_tensor.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
result->Clear();
|
|
result->Resize(embedding_tensor.Numel());
|
|
// Copy the raw embedding vector directly without L2 normalize
|
|
// post process. Let the user decide whether to normalize or not.
|
|
// Will call utils::L2Normlize() method to perform L2
|
|
// normalize if l2_normalize was set as 'true'.
|
|
std::memcpy(result->embedding.data(), embedding_tensor.Data(),
|
|
embedding_tensor.Nbytes());
|
|
if (l2_normalize) {
|
|
auto norm_embedding = utils::L2Normalize(result->embedding);
|
|
std::memcpy(result->embedding.data(), norm_embedding.data(),
|
|
embedding_tensor.Nbytes());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool InsightFaceRecognitionModel::Predict(cv::Mat* im,
|
|
FaceRecognitionResult* result) {
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> input_tensors(1);
|
|
|
|
if (!Preprocess(&mat, &input_tensors[0])) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
|
std::vector<FDTensor> output_tensors;
|
|
if (!Infer(input_tensors, &output_tensors)) {
|
|
FDERROR << "Failed to inference." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!Postprocess(output_tensors, result)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace faceid
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|