// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/faceid/contrib/insightface_rec.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace faceid { InsightFaceRecognitionModel::InsightFaceRecognitionModel( const std::string& model_file, const std::string& params_file, const RuntimeOption& custom_option, const ModelFormat& model_format) { if (model_format == ModelFormat::ONNX) { valid_cpu_backends = {Backend::ORT}; valid_gpu_backends = {Backend::ORT, Backend::TRT}; } else { valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; } runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; initialized = Initialize(); } bool InsightFaceRecognitionModel::Initialize() { // parameters for preprocess size = {112, 112}; alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f}; beta = {-1.f, -1.f, -1.f}; // RGB swap_rb = true; l2_normalize = false; if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } return true; } bool InsightFaceRecognitionModel::Preprocess(Mat* mat, FDTensor* output) { // face recognition model's preprocess steps in insightface // reference: insightface/recognition/arcface_torch/inference.py // 1. Resize // 2. BGR2RGB // 3. Convert(opencv style) or Normalize // 4. HWC2CHW int resize_w = size[0]; int resize_h = size[1]; if (resize_h != mat->Height() || resize_w != mat->Width()) { Resize::Run(mat, resize_w, resize_h); } if (swap_rb) { BGR2RGB::Run(mat); } Convert::Run(mat, alpha, beta); HWC2CHW::Run(mat); Cast::Run(mat, "float"); mat->ShareWithTensor(output); output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c return true; } bool InsightFaceRecognitionModel::Postprocess( std::vector& infer_result, FaceRecognitionResult* result) { FDASSERT((infer_result.size() == 1), "The default number of output tensor must be 1 according to " "insightface."); FDTensor& embedding_tensor = infer_result.at(0); FDASSERT((embedding_tensor.shape[0] == 1), "Only support batch =1 now."); if (embedding_tensor.dtype != FDDataType::FP32) { FDERROR << "Only support post process with float32 data." << std::endl; return false; } result->Clear(); result->Resize(embedding_tensor.Numel()); // Copy the raw embedding vector directly without L2 normalize // post process. Let the user decide whether to normalize or not. // Will call utils::L2Normlize() method to perform L2 // normalize if l2_normalize was set as 'true'. std::memcpy(result->embedding.data(), embedding_tensor.Data(), embedding_tensor.Nbytes()); if (l2_normalize) { auto norm_embedding = utils::L2Normalize(result->embedding); std::memcpy(result->embedding.data(), norm_embedding.data(), embedding_tensor.Nbytes()); } return true; } bool InsightFaceRecognitionModel::Predict(cv::Mat* im, FaceRecognitionResult* result) { Mat mat(*im); std::vector input_tensors(1); if (!Preprocess(&mat, &input_tensors[0])) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } input_tensors[0].name = InputInfoOfRuntime(0).name; std::vector output_tensors; if (!Infer(input_tensors, &output_tensors)) { FDERROR << "Failed to inference." << std::endl; return false; } if (!Postprocess(output_tensors, result)) { FDERROR << "Failed to post process." << std::endl; return false; } return true; } } // namespace faceid } // namespace vision } // namespace fastdeploy