Files
FastDeploy/fastdeploy/vision/facealign/contrib/pfld.cc
WJJ1995 9437dec9f5 [Model] add PFLD model (#433)
* support face alignment PFLD

* add PFLD demo

* fixed FaceAlignmentResult

* fixed bugs

* fixed img size

* fixed readme

* deal with comments

* fixed readme

* add pfld testcase

* update infer.py

* add gflags for example

* update c++ readme

* add gflags in example

* fixed for ci

* fixed gflags.cmake

* deal with comments

* update infer demo

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-11-02 11:50:16 +08:00

137 lines
4.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/facealign/contrib/pfld.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace facealign {
PFLD::PFLD(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool PFLD::Initialize() {
// parameters for preprocess
size = {112, 112};
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool PFLD::Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<int, 2>>* im_info) {
// Resize
int resize_w = size[0];
int resize_h = size[1];
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
// Normalize
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
Convert::Run(mat, alpha, beta);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {mat->Height(), mat->Width()};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
bool PFLD::Postprocess(FDTensor& infer_result, FaceAlignmentResult* result,
const std::map<std::string, std::array<int, 2>>& im_info) {
FDASSERT(infer_result.shape[0] == 1, "Only support batch = 1 now.");
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
auto iter_in = im_info.find("input_shape");
FDASSERT(iter_in != im_info.end(),
"Cannot find input_shape from im_info.");
int in_h = iter_in->second[0];
int in_w = iter_in->second[1];
result->Clear();
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; i += 2) {
float x = data[i];
float y = data[i + 1];
x = std::min(std::max(0.f, x), 1.0f);
y = std::min(std::max(0.f, y), 1.0f);
// decode landmarks (default 106 landmarks)
result->landmarks.emplace_back(
std::array<float, 2>{x * in_w, y * in_h});
}
return true;
}
bool PFLD::Predict(cv::Mat* im, FaceAlignmentResult* result) {
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
std::map<std::string, std::array<int, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {mat.Height(), mat.Width()};
im_info["output_shape"] = {mat.Height(), mat.Width()};
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors[1], result, im_info)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namespace facealign
} // namespace vision
} // namespace fastdeploy