// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/facealign/contrib/pfld.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace facealign { PFLD::PFLD(const std::string& model_file, const std::string& params_file, const RuntimeOption& custom_option, const ModelFormat& model_format) { if (model_format == ModelFormat::ONNX) { valid_cpu_backends = {Backend::OPENVINO, Backend::ORT}; valid_gpu_backends = {Backend::ORT, Backend::TRT}; } else { valid_cpu_backends = {Backend::PDINFER, Backend::ORT}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; } runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; initialized = Initialize(); } bool PFLD::Initialize() { // parameters for preprocess size = {112, 112}; if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } return true; } bool PFLD::Preprocess(Mat* mat, FDTensor* output, std::map>* im_info) { // Resize int resize_w = size[0]; int resize_h = size[1]; if (resize_h != mat->Height() || resize_w != mat->Width()) { Resize::Run(mat, resize_w, resize_h); } // Normalize std::vector alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f}; std::vector beta = {0.0f, 0.0f, 0.0f}; Convert::Run(mat, alpha, beta); // Record output shape of preprocessed image (*im_info)["output_shape"] = {mat->Height(), mat->Width()}; HWC2CHW::Run(mat); Cast::Run(mat, "float"); mat->ShareWithTensor(output); output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c return true; } bool PFLD::Postprocess(FDTensor& infer_result, FaceAlignmentResult* result, const std::map>& im_info) { FDASSERT(infer_result.shape[0] == 1, "Only support batch = 1 now."); if (infer_result.dtype != FDDataType::FP32) { FDERROR << "Only support post process with float32 data." << std::endl; return false; } auto iter_in = im_info.find("input_shape"); FDASSERT(iter_in != im_info.end(), "Cannot find input_shape from im_info."); int in_h = iter_in->second[0]; int in_w = iter_in->second[1]; result->Clear(); float* data = static_cast(infer_result.Data()); for (size_t i = 0; i < infer_result.shape[1]; i += 2) { float x = data[i]; float y = data[i + 1]; x = std::min(std::max(0.f, x), 1.0f); y = std::min(std::max(0.f, y), 1.0f); // decode landmarks (default 106 landmarks) result->landmarks.emplace_back( std::array{x * in_w, y * in_h}); } return true; } bool PFLD::Predict(cv::Mat* im, FaceAlignmentResult* result) { Mat mat(*im); std::vector input_tensors(1); std::map> im_info; // Record the shape of image and the shape of preprocessed image im_info["input_shape"] = {mat.Height(), mat.Width()}; im_info["output_shape"] = {mat.Height(), mat.Width()}; if (!Preprocess(&mat, &input_tensors[0], &im_info)) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } input_tensors[0].name = InputInfoOfRuntime(0).name; std::vector output_tensors; if (!Infer(input_tensors, &output_tensors)) { FDERROR << "Failed to inference." << std::endl; return false; } if (!Postprocess(output_tensors[1], result, im_info)) { FDERROR << "Failed to post process." << std::endl; return false; } return true; } } // namespace facealign } // namespace vision } // namespace fastdeploy