Files
FastDeploy/examples/vision/detection/yolov5/README.md
Zheng_Bicheng ad04a4377c [Doc]Fix doc error (#539)
* 修正RKPicodet文档

* 修正yolov5文档模型大小的错误
2022-11-09 13:57:02 +08:00

31 lines
1.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# YOLOv5准备部署模型
- YOLOv5 v6.0部署模型实现来自[YOLOv5](https://github.com/ultralytics/yolov5/tree/v6.0),和[基于COCO的预训练模型](https://github.com/ultralytics/yolov5/releases/tag/v6.0)
- 1[官方库](https://github.com/ultralytics/yolov5/releases/tag/v6.0)提供的*.onnx可直接进行部署
- 2开发者基于自己数据训练的YOLOv5 v6.0模型,可使用[YOLOv5](https://github.com/ultralytics/yolov5)中的`export.py`导出ONNX文件后完成部署。
## 下载预训练ONNX模型
为了方便开发者的测试下面提供了YOLOv5导出的各系列模型开发者可直接下载使用。下表中模型的精度来源于源官方库
| 模型 | 大小 | 精度 |
|:---------------------------------------------------------------- |:----- |:----- |
| [YOLOv5n](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n.onnx) | 7.5MB | 28.4% |
| [YOLOv5s](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx) | 28.9MB | 37.2% |
| [YOLOv5m](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5m.onnx) | 84.7MB | 45.2% |
| [YOLOv5l](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5l.onnx) | 186.2MB | 48.8% |
| [YOLOv5x](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5x.onnx) | 346.9MB | 50.7% |
## 详细部署文档
- [Python部署](python)
- [C++部署](cpp)
- [服务化部署](serving)
## 版本说明
- 本版本文档和代码基于[YOLOv5 v6.0](https://github.com/ultralytics/yolov5/tree/v6.0) 编写