mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
100 lines
4.6 KiB
Markdown
Executable File
100 lines
4.6 KiB
Markdown
Executable File
English | [简体中文](README_CN.md)
|
|
|
|
|
|
# YOLOv7 Python Deployment Demo
|
|
|
|
Two steps before deployment:
|
|
|
|
- 1. The hardware and software environment meets the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
- 2. Install FastDeploy Python whl package. Please refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
|
|
|
|
This doc provides a quick `infer.py` demo of YOLOv7 deployment on CPU/GPU, and accelerated GPU deployment by TensorRT. Run the following command:
|
|
|
|
```bash
|
|
# Download sample deployment code
|
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
cd examples/vision/detection/yolov7/python/
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_infer.tar
|
|
tar -xf yolov7_infer.tar
|
|
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
|
|
|
# CPU
|
|
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device cpu
|
|
# GPU
|
|
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device gpu
|
|
# KunlunXin XPU
|
|
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device kunlunxin
|
|
# Huawei Ascend
|
|
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device ascend
|
|
```
|
|
If you want to test ONNX model:
|
|
```bash
|
|
# Download yolov7 model files and test images
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx
|
|
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
|
|
|
# CPU Inference
|
|
python infer.py --model yolov7.onnx --image 000000014439.jpg --device cpu
|
|
# GPU
|
|
python infer.py --model yolov7.onnx --image 000000014439.jpg --device gpu
|
|
# Infer with TensorRT on GPU
|
|
python infer.py --model yolov7.onnx --image 000000014439.jpg --device gpu --use_trt True
|
|
```
|
|
|
|
The visualisation of the results is as follows.
|
|
|
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/183847558-abcd9a57-9cd9-4891-b09a-710963c99b74.jpg">
|
|
|
|
## YOLOv7 Python Interface
|
|
|
|
```python
|
|
fastdeploy.vision.detection.YOLOv7(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
|
```
|
|
|
|
YOLOv7 model loading and initialisation, with model_file being the exported ONNX model format.
|
|
|
|
**Parameters**
|
|
|
|
> * **model_file**(str): Model file path
|
|
> * **params_file**(str): Parameter file path. If the model format is ONNX, the parameter can be filled with an empty string.
|
|
> * **runtime_option**(RuntimeOption): Back-end inference configuration. The default is None, i.e. the default is applied
|
|
> * **model_format**(ModelFormat): Model format. The default is ONNX format
|
|
|
|
### Predict Function
|
|
|
|
> ```python
|
|
> YOLOv7.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
|
> ```
|
|
>
|
|
> Model prediction interface with direct output of detection results from the image input.
|
|
>
|
|
> **Parameters**
|
|
>
|
|
> > * **image_data**(np.ndarray): Input image. Images need to be in HWC or BGR format
|
|
> > * **conf_threshold**(float): Filter threshold for detection box confidence
|
|
> > * **nms_iou_threshold**(float): iou thresholds during NMS processing
|
|
|
|
> **Return**
|
|
>
|
|
> > Return to`fastdeploy.vision.DetectionResult`Struct. For more details, please refer to [Vision Model Results](../../../../../docs/api/vision_results/)
|
|
|
|
### Class Member Variables
|
|
|
|
#### Pre-processing parameters
|
|
|
|
Users can modify the following pre-processing parameters for their needs. This will affect the final reasoning and deployment results
|
|
|
|
> > * **size**(list[int]): This parameter modifies the 'resize' during preprocessing and contains two integer elements representing [width, height]. The default value is [640, 640].
|
|
> > * **padding_value**(list[float]): This parameter modifies the value of the padding when resizing the image. It contains three floating-point elements, representing the values of the three channels. The default value is [114, 114, 114].
|
|
> > * **is_no_pad**(bool): This parameter determines whether the image is resized by padding, `is_no_pad=ture` means no padding is used. The default value is `is_no_pad=false`.
|
|
> > * **is_mini_pad**(bool): This parameter allows the width and height of the image after resize to be the closest value to the `size` member variable, which the pixel size of the padding can be divided by the `stride` member variable. The default value is `is_mini_pad=false`.
|
|
> > * **stride**(int): Used with`stris_mini_pad` member value. The default value is`stride=32`
|
|
|
|
## Related files
|
|
|
|
- [YOLOv7 Model Introduction](..)
|
|
- [YOLOv7 C++ Deployment](../cpp)
|
|
- [Vision Model Results](../../../../../docs/api/vision_results/)
|
|
- [how to change inference backend](../../../../../docs/en/faq/how_to_change_backend.md)
|