Files
FastDeploy/examples/vision/detection/yolov5/python/README.md
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00

86 lines
4.1 KiB
Markdown
Executable File

English | [简体中文](README_CN.md)
# YOLOv5 Python Deployment Example
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
This directory provides examples that `infer.py` fast finishes the deployment of YOLOv5 on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
```bash
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov5/python/
# Download yolov5 model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_infer.tar
tar -xf yolov5s_infer.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU inference
python infer.py --model yolov5s_infer --image 000000014439.jpg --device cpu
# GPU inference
python infer.py --model yolov5s_infer --image 000000014439.jpg --device gpu
# TensorRT inference on GPU
python infer.py --model yolov5s_infer --image 000000014439.jpg --device gpu --use_trt True
# KunlunXin XPU inference
python infer.py --model yolov5s_infer --image 000000014439.jpg --device kunlunxin
```
The visualized result after running is as follows
<img width="640" src="https://user-images.githubusercontent.com/67993288/184309358-d803347a-8981-44b6-b589-4608021ad0f4.jpg">
## YOLOv5 Python Interface
```python
fastdeploy.vision.detection.YOLOv5(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
YOLOv5 model loading and initialization, among which model_file is the exported ONNX model format
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. ONNX format by default
### predict function
> ```python
> YOLOv5.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
> ```
>
> Model prediction interface. Input images and output detection results.
>
> **Parameter**
>
> > * **image_data**(np.ndarray): Input data in HWC or BGR format
> > * **conf_threshold**(float): Filtering threshold of detection box confidence
> > * **nms_iou_threshold**(float): iou threshold during NMS processing
> **Return**
>
> > Return `fastdeploy.vision.DetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description.
### Class Member Property
#### Pre-processing Parameter
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
> > * **size**(list[int]): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [640, 640]
> > * **padding_value**(list[float]): This parameter is used to change the padding value of images during resize, containing three floating-point elements that represent the value of three channels. Default value [114, 114, 114]
> > * **is_no_pad**(bool): Specify whether to resize the image through padding. `is_no_pad=True` represents no paddling. Default `is_no_pad=False`
> > * **is_mini_pad**(bool): This parameter sets the width and height of the image after resize to the value nearest to the `size` member variable and to the point where the padded pixel size is divisible by the `stride` member variable. Default `is_mini_pad=False`
> > * **stride**(int): Used with the `stris_mini_padide` member variable. Default `stride=32`
## Other Documents
- [YOLOv5 Model Description](..)
- [YOLOv5 C++ Deployment](../cpp)
- [Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)