Files
FastDeploy/examples/vision/detection/paddledetection/python/infer_mask_rcnn.py
yeliang2258 45865c8724 [Other] Change all XPU to KunlunXin (#973)
* [FlyCV] Bump up FlyCV -> official release 1.0.0

* XPU to KunlunXin

* update

* update model link

* update doc

* update device

* update code

* useless code

Co-authored-by: DefTruth <qiustudent_r@163.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2022-12-27 10:02:02 +08:00

81 lines
2.2 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
default=None,
help="Path of PaddleDetection model directory")
parser.add_argument(
"--image", default=None, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'kunlunxin', 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "kunlunxin":
option.use_kunlunxin(autotune=False, l3_workspace_size=0)
if args.device.lower() == "gpu":
# option.use_gpu()
print(
"""GPU inference with Backend::Paddle in python has not been supported yet. \
\nWill ignore this option.""")
if args.use_trt:
# TODO(qiuyanjun): may remove TRT option
# Backend::TRT has not been supported yet.
print(
"""Backend::TRT has not been supported yet, will ignore this option.\
\nPaddleDetection/MaskRCNN has only support Backend::Paddle now."""
)
return option
args = parse_arguments()
if args.model_dir is None:
model_dir = fd.download_model(name='mask_rcnn_r50_1x_coco')
else:
model_dir = args.model_dir
model_file = os.path.join(model_dir, "model.pdmodel")
params_file = os.path.join(model_dir, "model.pdiparams")
config_file = os.path.join(model_dir, "infer_cfg.yml")
# 配置runtime加载模型
runtime_option = build_option(args)
model = fd.vision.detection.MaskRCNN(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片检测结果
if args.image is None:
image = fd.utils.get_detection_test_image()
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im)
print(result)
# 预测结果可视化
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")