mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
English | 简体中文
PaddleDetection Model Deployment
Model Description
List of Supported Models
Now FastDeploy supports the deployment of the following models
- PP-YOLOE(including PP-YOLOE+) models
- PicoDet models
- PP-YOLO models(including v2)
- YOLOv3 models
- YOLOX models
- FasterRCNN models
- MaskRCNN models
- SSD models
- YOLOv5 models
- YOLOv6 models
- YOLOv7 models
- RTMDet models
Export Deployment Model
Before deployment, PaddleDetection needs to be exported into the deployment model. Refer to Export Models for more details.
Attention
- Do not perform NMS removal when exporting the model
- If you are running a native TensorRT backend (not a Paddle Inference backend), do not add the --trt parameter
- Do not add the parameter
fuse_normalize=True
when exporting the model
Download Pre-trained Model
For developers' testing, models exported by PaddleDetection are provided below. Developers can download them directly.
The accuracy metric is from model descriptions in PaddleDetection. Refer to them for details.
Model | Parameter Size | Accuracy | Note |
---|---|---|---|
picodet_l_320_coco_lcnet | 23MB | Box AP 42.6% | |
ppyoloe_crn_l_300e_coco | 200MB | Box AP 51.4% | |
ppyoloe_plus_crn_m_80e_coco | 83.3MB | Box AP 49.8% | |
ppyolo_r50vd_dcn_1x_coco | 180MB | Box AP 44.8% | TensorRT not supported yet |
ppyolov2_r101vd_dcn_365e_coco | 282MB | Box AP 49.7% | TensorRT not supported yet |
yolov3_darknet53_270e_coco | 237MB | Box AP 39.1% | |
yolox_s_300e_coco | 35MB | Box AP 40.4% | |
faster_rcnn_r50_vd_fpn_2x_coco | 160MB | Box AP 40.8% | TensorRT not supported yet |
mask_rcnn_r50_1x_coco | 128M | Box AP 37.4%, Mask AP 32.8% | TensorRT、ORT not supported yet |
ssd_mobilenet_v1_300_120e_voc | 24.9M | Box AP 73.8% | TensorRT、ORT not supported yet |
ssd_vgg16_300_240e_voc | 106.5M | Box AP 77.8% | TensorRT、ORT not supported yet |
ssdlite_mobilenet_v1_300_coco | 29.1M | TensorRT、ORT not supported yet | |
rtmdet_l_300e_coco | 224M | Box AP 51.2% | |
rtmdet_s_300e_coco | 42M | Box AP 44.5% | |
yolov5_l_300e_coco | 183M | Box AP 48.9% | |
yolov5_s_300e_coco | 31M | Box AP 37.6% | |
yolov6_l_300e_coco | 229M | Box AP 51.0% | |
yolov6_s_400e_coco | 68M | Box AP 43.4% | |
yolov7_l_300e_coco | 145M | Box AP 51.0% | |
yolov7_x_300e_coco | 277M | Box AP 53.0% |