mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
75 lines
2.9 KiB
Markdown
Executable File
75 lines
2.9 KiB
Markdown
Executable File
English | [简体中文](README_CN.md)
|
|
# YOLOv5Cls Python Deployment Example
|
|
|
|
Before deployment, two steps require confirmation.
|
|
|
|
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md).
|
|
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md).
|
|
|
|
This directory provides examples that `infer.py` fast finishes the deployment of YOLOv5Cls on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
|
|
|
|
```bash
|
|
# Download deployment example code
|
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
cd examples/vision/classification/yolov5cls/python/
|
|
|
|
# Download the YOLOv5Cls model file and test images
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-cls.onnx
|
|
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
|
|
|
# CPU inference
|
|
python infer.py --model yolov5n-cls.onnx --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
|
|
# GPU inference
|
|
python infer.py --model yolov5n-cls.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
|
|
# TensorRT inference on GPU
|
|
python infer.py --model yolov5n-cls.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True
|
|
```
|
|
|
|
The result returned after running is as follows
|
|
```bash
|
|
ClassifyResult(
|
|
label_ids: 265,
|
|
scores: 0.196327,
|
|
)
|
|
```
|
|
|
|
## YOLOv5Cls Python Interface
|
|
|
|
```python
|
|
fastdeploy.vision.classification.YOLOv5Cls(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
|
```
|
|
|
|
YOLOv5Cls model loading and initialization, among which model_file is the exported ONNX model format
|
|
|
|
**Parameter**
|
|
|
|
> * **model_file**(str): Model file path
|
|
> * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format
|
|
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default. (use the default configuration)
|
|
> * **model_format**(ModelFormat): Model format. ONNX format by default
|
|
|
|
### predict Function
|
|
|
|
> ```python
|
|
> YOLOv5Cls.predict(image_data, topk=1)
|
|
> ```
|
|
>
|
|
> Model prediction interface. Input images and output classification topk results directly.
|
|
>
|
|
> **Parameter**
|
|
>
|
|
> > * **input_image**(np.ndarray): Input data in HWC or BGR format
|
|
> > * **topk**(int): Return the topk classification results with the highest prediction probability. Default 1
|
|
|
|
> **Return**
|
|
>
|
|
> > Return `fastdeploy.vision.ClassifyResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure.
|
|
|
|
|
|
## Other Documents
|
|
|
|
- [YOLOv5Cls Model Description](..)
|
|
- [YOLOv5Cls C++ Deployment](../cpp)
|
|
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|
|
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|