
* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
4.0 KiB
Executable File
English | 简体中文
PaddleClas C++ Deployment Example
This directory provides examples that infer.cc
fast finishes the deployment of PaddleClas models on CPU/GPU and GPU accelerated by TensorRT.
Before deployment, two steps require confirmation.
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements.
-
- Download the precompiled deployment library and samples code according to your development environment. Refer to FastDeploy Precompiled Library.
Taking ResNet50_vd inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
mkdir build
cd build
# Download FastDeploy precompiled library. Users can choose your appropriate version in the`FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download ResNet50_vd model file and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU inference
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
# GPU inference
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
# TensorRT inference on GPU
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
# IPU inference
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 3
# KunlunXin XPU inference
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 4
The above command works for Linux or MacOS. Refer to
- How to use FastDeploy C++ SDK in Windows for SDK use-pattern in Windows
PaddleClas C++ Interface
PaddleClas Class
fastdeploy::vision::classification::PaddleClasModel(
const string& model_file,
const string& params_file,
const string& config_file,
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
PaddleClas model loading and initialization, where model_file and params_file are the Paddle inference files exported from the training model. Refer to Model Export for more information
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path
- config_file(str): Inference deployment configuration file
- runtime_option(RuntimeOption): Backend inference configuration. None by default. (use the default configuration)
- model_format(ModelFormat): Model format. Paddle format by default
Predict function
PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
Model prediction interface. Input images and output results directly.
Parameter
- im: Input images in HWC or BGR format
- result: The classification result, including label_id, and the corresponding confidence. Refer to Visual Model Prediction Results for the description of ClassifyResult
- topk(int): Return the topk classification results with the highest prediction probability. Default 1